
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1971

The structure and organization of communication
processors
Richard Elmer Zimmerman
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zimmerman, Richard Elmer, "The structure and organization of communication processors " (1971). Retrospective Theses and
Dissertations. 5200.
https://lib.dr.iastate.edu/rtd/5200

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/5200?utm_source=lib.dr.iastate.edu%2Frtd%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

72-12,616

ZIMMERMAN, Richard Elmer, 1941-
THE STRUCTURE AND ORGANIZATION OF COMMUNICATION
PROCESSORS.

Iowa State University, Ph.D., 1971
Engineering, electrical

University Microfilms, A XERQ\Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

www.manaraa.com

The structure and organization of communication processors

iv

Richard Elmer Zimmerman

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Engineering

Approved;

For the Major Department

Iowa State University
Ames, Iowa

1971

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

PLEASE NOTE:

Some Pages have indistinct
print. Filmed as received.

UNIVERSITY MICROFILMS

www.manaraa.com

ii

TABLE OF CONTENTS

Page

INTRODUCTION 1

REVIEW OF LITERATURE 5

Coiraminication Processors 5

LSI and LSI Architectures 9

COMMDNICATION PROCESSOR ORGANIZATIONS 14

A MSI Logic Family 14

Organizational Considerations 33

COMMUNICATION PROCESSOR STRUCTURES 39

Structure Considerations 39

A MSI COMMUNICATION PROCESSOR 42

A TERMINAL PROCESSOR 54

Processing Techniques 6l

CONCLUSIONS 66

LITERATURE CITED 71

ACKNOWLEDGMENTS 74

APPENDIX A: INSTRUCTION SET DESCRIPTION 75

APPENDIX B: SAMPLE PROGRAMS 91

www.manaraa.com

1

INTRODUCTION

• Computer communications are defined to be those communications which

are necessary for the flow of information between a host computer and its

various terminals (1). In recent years, due to the availability of low

cost data transmission techniques, wide spread conçjuter communications have

become economically viable. As the technology for data transmission has

developed computer communication networks have been developed. This has

led to communication-based computer systems, i.e., systems that utilize

some type of carrier facilities to transmit or receive data.

The full computing power of a communication-based computer system

would probably not be realizable without the development of time-shared

computer systems. Time-sharing is defined to be the apparently simulta­

neous access to a computer system by a group of independent users (2).

Time-sharing is feasible because of the immense speed differences between

the human users and the computing system; each on-line user feels that the

central machine is his alone. This feeling occurs as long as the response

time, i.e., the time for the host machine to answer, is kept relatively

small. The desire to keep response time small has led, in turn, to real­

time computer systems. Real-time systems are those in which some partic­

ular response time requirement must be met ty the system (2).

The juxtaposition of real-time, time-shared computer systems for use

on-line using communication networks has led to a specialized processor

known as a communication processor. These processors, usually small

computers known as mini-computers, are responsible for supervising the

communication networks. Smaller versions of these machines are, or can be,

used at a remote site as intelligent terminals or as line concentrators.

www.manaraa.com

2

This need for communication processors has arisen from two basic

reasons. One; most large systems have in the past been designed for

batch oriented processing» Thus the handling of many individual ter­

minals could greatly overload the system. With the advent of machines

oriented toward a multi-user environment this problem has not been totally

alleviated. The demands upon a terminal oriented system are severe; more

time can be spent receiving data than processing it (3). The heavy load

comes about because each terminal generates many interrupts for each line

of data transmitted. The communication processor can handle those inter­

rupts and present data to the host machine in a clean format. This greatly

reduces the load on the host machine.

In addition, more tasks can be assigned to a communication processor.

These tasks might include such things as code conversion, editing and error

detection/correction. This, in turn, reduces the host machine's work load.

As the need for communication processors has been increasing a second,

parallel, development has been taking place. This is the development of

large scale integrated circuit arrays. While some doubt exists as to

exactly what constitutes large scale integration (LSI),a general defini­

tion is this: Arrays having a gate complexity greater than one hundred

gates are referred to as LSI. For arrays with a conqplexity from ten to

one hundred gates the term medium scale integration (MSI) has been adopted.

Small scale integration refers to arrays with complexities of less than

ten gates.

LSI has had, and will continue to have, a great iiqpact in two areas

that are of interest to a system architect. The first area is that of

available functions where a function is defined to be some operation, e.g..

www.manaraa.com

3

addition. As it has become apparent that the architect can expect to

accomplish more on a single chip of silicon a problem as to what functions

were necessary has arisen. This problem has led to a great deal of

research with regard to system architectures that could more fully utilize

LSI. There have been two primary efforts in this area. One has been to

maximize the gate to pin ratio, i.e., minimize the interconnections to the

outside world. This approach recognizes that logic, in a large array, can

be cheaper than interconnections a significant amount. The second

approach, which does not exclude the first, has been to minimize the number

of unique parts in the system. This solution comes about because develop­

ment costs are clbsely tied to the number of parts in the system; fewer

parts mean, in general, lower costs.

A second area which has been affected by LSI is that of storage.

Heretofore, magnetic storage devices have been the dominant storage tech-

-. nology. Magnetic storage devices have inherently complex electronic sub­

systems associated with the storage system. The need to share this complex

electronic subsystem has led to a large storage module size* This has, in

turn, yielded great economical benefits. Large scale integrated circuit

storage elements, while still requiring some shared logic, have much of the

decoding logic and all of the sense amplifiers and word drivers on a single

chip of silicon. Thus, while larger semiconductor memories could and would

be constructed, very small semiconductor memories can be distributed in a

processor. This would not be practical with magnetic stores.

LSI will have a great impact upon the conpiter systems of the future.

Because of this effect it behooves a system architect to fully study LSI

www.manaraa.com

4

techniques. With current semiconductor techniques MSI is much easier to

produce than LSI. This research will propose a MSI logic family. This

logic family will be a standard minimal number of parts type family rather

than a custom set of chips. Unfortunately, because of limited facilities

no attempt was made to actually fabricate this logic family.

This choice of MSI logic will be shown to have great ramifications

upon the organization of a communication processor. The rest of this

research will be a inquiry into efficient organizations and structures for

a family of MSI communications processors which are intended solely for use

in communication-based conpiting systems. Finally a small communication

processor will be discussed. This small processor will utilize the ideas

discussed within this paper. The results of evaluating this processor will

also be discussed»

www.manaraa.com

5

REVIEW OF LITERATURE

Coiranunication Processors

Mini-computers are small, low priced, general purpose computers that

can be used as dedicated systems» One of the primary uses of mini-compute,

ers has been as dedicated communication processors. These mini-coiqputers

have been programmed to reduce host machine overhead, Newport (4) points

out that, in a large airlines reservation system or time-shared interactive

system, it is very easy to swamp the host machine to the point that little

basic computation can be done. It is precisely this large overhead that

the communication-oriented mini-computer is intended to reduce.

The need for communication processors was recognized very early in the

history of interactive computing systems. Strachey (5), however, first

proposed time-sharing to reduce the complexity of terminals. Strachey felt

that the large fast main machine could be used to control peripherals and

to provide buffer storage for those peripherals. The impetus was, of

course, economical. Buffer storage and control hardware were very expen­

sive in 1959*

An early (1962) time-shared system described by Corbato et al, (6),

was based on an IBM 709O computer. As a part of the 7090 a direct data

connection port ̂ s used to attach a "real-time equipment buffer and con­

trol rack" for controlling terminal devices. Thus, three years after

Strachey's initial proposal, the buffer has been taken back out of the

main machine. The idea of sharing this buffer storage and control was

retained however. The real-time equipment was hardwired and any flexi­

bility was contained in the system programs.

www.manaraa.com

6

In 1965 Corbato and Vyssotsky (7) discussed the Multics System of MIT.

The Multics System was based on a GE 645 Computing System. The I&iltics

System utilized a "Generalized Input/Output Controller" for supervising the

comraonication network of Multics. Ossanna et alo (8) described the Gener­

alized Input/Output Controller. The GIOC was an nonprogrammable interface

which was much more sophisticated than the earlier MIT buffer and control

mentioned above. The flexibility of the GIOC was still the primary respon­

sibility of the system software, however. The GIOC did perform such tasks

as word assembly and disassembly, parity checking and generation, sequenc­

ing and control, status updating, and priority allocation in hardware.

Cohler and Rubinstein (9) suggested using a general purpose processor

in a message switching system in 1964. The reasoning was that the wide

varity of requirements in a message switching system dictated the use of a

programmable message processor. To achieve high reliability, a multi­

processor scheme was implemented» This is often the case in message

switching systems where loss of data is catastrophic failure, Cohler and

Rubinstein suggested time-sharing the message switching processors for

economical reasons.

Commercial specialized communication processors appeared at a rela­

tively early date. In 1964 Daley, Scott, Drescher and Zito described the

IBM 7740 and 7741 (10,11). This system was a programmable front-end

processor specialized for the communications network.

To aid in the input/output problem, such as that mentioned by

Strachey, computers have utilized a multiplexer type l/O scheme. The third

generation machines such as the IBM ̂ 60, the Control Data 66OO and the

Burroughs B5500 system all utilized some type of intelligent multiplexers

www.manaraa.com

7

for purposes of controlling local peripherals. These intelligent multi­

plexers were capable of transferring data to or from main memory without

central processor interference by utilizing a storage cycle stealing

ability. This increased greatly the number and types of peripherals the

central computer could control. These third generation machines were

still, for the most part, batch processing oriented. The real impact of

interactive computing was to take place later.

The present "communication processor" is probably a general purpose

mini-computer adapted to handle communication processing by Virtue of

special hardware and software packages. Examples of this application of

mini-computers abound (1,3,4,12,13,14,15). Probably the best recent

example that is well documented in the literature is that of Burner et al •

(16) of Washington State University. In that application an Interdata

Model 3 mini-computer was used as a programmable Data Concentrator for a

IBIf /36O-67. The Interdata 3 was supplied with a special instruction to

aid in mulitplexing and concentration. In addition, Burner et al. pro­

posed a dual processor system which would use a Interdata Model 3 and a

Interdata Model 4. The slower Model 3 would be used to multiplex 64 slow

speed lines (*̂ 110 baud) while the Model 4 would handle the 36O interface,

the Model 3» and four lines with data rates on the order of 2400 baud»

The basic reason for this dual processor system -Has to distribute the load

and to have enon^ processing power left to do such sophisticated tasks as

syntax checking. The Models 3 and 4 would work out of a shared core mssso-

ry. Thus the communication processor has not only been removed from the

host machine bat it has been increased by a factor of two.

www.manaraa.com

8

As the need for programmable communication processors has become

apparent, so has a need and desire for more economical communications.

It is possible to reduce communication cost by two methods; multiplexing

and concentration. Multiplexing is the assignment of a channel's capacity

on some, fixed, predetermined basis. Channel capacity is assigned to a

terminal, for example, even if that terminal is not presently in use.

Concentration is similar to multiplexing except that channel capacity is

assigned on a demand basis; only those terminals •Kftiich desire service are

assigned channel capacity.

The multiplexers available are generally hardwired units that are

intended solely for use as multiplexers. The use of these devices has been

strictly for the purpose of increasing communication efficiencies. There

has been, however, some effort at supplying more intelligent multiplexers

which do more than simple multiplexing. The IBM 2905, which was described

by Arnold (17), is an example. This idea was first proposed by Filipowsky

and Scherer in 1961 (18).

The need for sophisticated terminals has ê qpanded as interactive

computing has becoms feasil̂ e. While the most common terminal is still the

teletypewriter, the full graphical display terminal is becoming more and

more commonplace. Licklider (19) first described the symbiosis, i.e., the

union, possible between man and machine. Lewin (20) summarized the tech­

nology requirements for graphic terminals. Ifyer and Sutherland (21)

described the general requirements for a display processor, i.e., the part

of a display that is responsible for the control sequencing.

Mini-computers have been used as dedicated display processors (20,22).

This use of mini-computers is especially desirable when the graphics terrai-

www.manaraa.com

9

nal is located at a site which is remote from the host machine. This has

led, in turn, to a sharing of the display processor by several displays

(22). Thus it can be seen that time-sharing has an much expanded meaning

over Strachey's original idea.

LSI and LSI Architectures

LSI proponents have long recognized two primary obstacles in the path

to full utilization of LSI. The first problem is that present day computer

structures are typified by highly irregular control structures. These

irregular control structures have come about because system designers

have, in the past, been very concerned about the sharing of logic func­

tions. Thus computers have been partitioned by function. Even before the

advent of LSI, however, it had become apparent that interconnections were

contributing a significant portion of the cost of systems. In addition,

LSI packaging techniques have limited the number of interconnections to a

chip. This has led to a need for minimal interconnections.

Levy et al. (23) point out that conventional machines have achieved

gate-to-pin ratios on the order of ,85 to 1. Clearly some new approach

must be used if arrays having complexities on the order of 1000 gates are

to be built. Rice (24) suggests that logic is cheaper than interconnec­

tions.

The second major problem is that of a set of minimum number of parts.

There must be some small set of LSI chips which will allow the system

designer to conl'igure his own system (25,26,27). The absolute minimum

would be one chip. The computer-on-a-chip does not seem very practical

presently. The computer-on-a-chip would be viable only in those cases

where large production volumes are anticipated» The present day "computer-

www.manaraa.com

10

on-a-chip"* tends to "be relatively inflexible -with-regard to organization

and structure.

Henle and Maley (28) identify four approaches to LSI. These ap­

proaches are the custom chip, the master-slice approach, the array chip and

the functional unit. The custom chip is designed much as a printed circuit

board. The logic diagram is transformed into a custom gate configuration;

gate utilization is 100̂ .

In the master-slice approach, a chip is manufactured with some fixed

set of gates. These gates are not interconnected however, i.e., the

second level metalization is not specified. VJhen the design is completed

the second level metalization is applied; this determines the logic func­

tion of a chip. The master-slice approach leads to lower levels of inte­

gration than the custom chip (25). In addition, the utilization of gates

is almost always less than lOOjS.

The array chip is defined by Henly and Maley (28) as a read-only

memory« In this approach the logic designer specifies a truth table.

The ROM approach is probably one of the cheapest approaches and is intrin­

sically very regular.

A more common definition of the array approach is that of Koczela and

Wang (29). In this approach a machine is constructed using an array of

many small processors. In this manner the cost of development for a chip

can be amortized by using many identical chips in a system. The common

chip resembles a mini-computer.

The functional unit is a standard circuit that performs some function

such as, for exançle, arithmetic. The standard MSI functions available

currently are exançjles of this approach.

www.manaraa.com

11

Architectural approaches to effective utilization of LSI are varied.

Beelitz et al, (30) proposed and constructed a functionally partitioned

machine known as LIMC. This machine used fimctional units with local

control; the machine was inicroprogramed. While the control sector of

each functional unit was identical the actual functional unit varied

depending upon the tasks to he performed. This approach greatly increased

the gate to pin ratio. The ratio improved hy a factor of 2:1 to ?:! over

a standard approach depending upon the level of integration, The improve­

ment of 7:1 was predicted for an integration level on the order of 1000

gates.

Rice (31) used an approach which can best be described as a bit-sliced

universal register approach. In Rice's technique a "register" that is ca­

pable of many basic operations is programmed to perform standard opera­

tions, This technique has been attributed to Noyce by Atley (32),

Avizienis and Tung (33) &nd Henle and Maley (28). In Rice's approach the

bit width of the universal element is kept small so that a l6-pin dual-in­

line package can be used. This results in a bit width of four bits or

less. The universal register approach yields a very low number of parts,

Noyce (32) states three different parts are enough; the universal register,

a random access read-write store, and a read-only store. This coincides

with Rice's predictions (31) except that Rice alludes to "a few discrete

integrated circuits".

An area lAiich has received much attention over the past two years is

that of semiconductor or LSI memories. The LSI memory is said to present

a challenge to the predominant main frame storage technology; the core

www.manaraa.com

12

memory. There are several architectual ramifications inherent in the use

of LSI memories.

One of the most important differences betï̂ een magnetic memories and

semiconductor memories is that the size of an economical semiconductor

module is an order of magnitude less than that of a magnetic memory (31,

34,35). It is now possible for a system designer to distribute small

memories throughout the system. This concept can lead to systems which are

radical departures from conventional machines.

Raisanen (34) discusses the advantages of distributed memory. This

leads directly to logic-in-memory approaches such as that described by

Kautz (36). Approaches such as associative processors could also become

more feasible economically in the next decade because of semiconductor

memories (34).

House and Henzel (37) have discussed the effect of LSI memories upon

mini-computer designs, A key point of their argument is that LSI memory

speeds are increasing much faster than are logic speeds. This, once again,

forces a system designer to reconsider conventional machine designs. As

memory speeds increase,more logic will have to be devoted to keeping the

memory busy. House and Henzel feel that this will result in mini-computers

with the same amount of logic but fewer architectural features than pre­

sently are available. This means that a more regular control structure

will have to be found.

In 1967 Petritz (38) made some predictions based upon previous experi­

ence. His predictions have been proven essentially correct. Silicon chip

sizes on the order of 200 square mils have been achieved. Memory cell

sizes on the order of 20 square mils are now possible (39) for bipolar

www.manaraa.com

13

devicoti. Gate areas are on the order of 150 square mils for current mode

logic or transistor-transistor logic. This means that complexities on the

order of 200 gates per chip can be achieved with present day bipolar tech­

nology. Memory chip sizes for random access read-write memories seem to be

limited to the order of 256 bits or so at present. These facts will be

important in later considerations.

www.manaraa.com

14

COMMUNICATION PROCESSOR ORGANIZATIONS

Computer organization, i.e., the data flow and the control logic, is

affected by several factors. The task to be performed by the processor

should influence the organization of a machine heavily. Because logic and

fabrication are relatively inexpensive, it is possible to design and build

economical special purpose processors to perform certain tasks. The stand­

ard "general purpose" arithmetic processor organization may not be a viable

answer for a processor which serves a special purpose.

In addition to the tasks to be performed» physical realities play an

important role in determing a system's organization. The packaging tech­

nique and logic family used can greatly affect the final product. So as

to approach the problem of communication processing more fully, a medium

scale integrated circuit family will be proposed. This logic family influ­

ences the organization of a processor,but does not limit a designer's flex­

ibility. After describing the logic family the considerations which are

important in communication processor organization will be discussed. A

following section will discuss a tlSI communication processor organization

which utilizes the ideas set forth in this section.

A MSI Logic Family

The basic considerations and goals in designing a I'fil logic family are

discussed in this section along with pin count data and silicon area re­

quirements. The detailed descriptions are down to the gate level, in most

cases, but do not go further, i.e., the actual transistor configuration is

not described. Basic area calculations are included to show that this

logic family could be built l^y current or near future state-of-the-art.

www.manaraa.com

15

High speed is desirable in a logic family to achieve high system per­

formance while lower power consumption is necessary to minimize heating and

power supply problems. Current, well developed technologies that meet the

requirements of speed and power are current mode logic and complementary

transistor logic. Both technologies, in addition, are capable of wired-or

operation. This capability aids in the construction of a bus-oriented

system. And/nand notation has been adopted for the standard gate of this

family. This would necessitate the use of negative logic for most current

mode logic families.

For purposes of area calculations, the following assumptions will be

2 2
used. Memory cell sizes will be 20 mil for lower speed cells and 30 mil

for higher speed cells. Gates will be assumed to have an area on the order

2
of 150 mil irregardless of the number of inputs. This, on the average,

should give an approximate area required for the particular circuit, A

2
chip size of 40,000 rail will be adhered to in all cases. This establishes

an upper limit on the order of 200 gates per chip for logic devices allow­

ing 25̂ for chip interconnect pads. This is adequate and within the cur­

rent state-of-the-art.

Medium Scale Integration (MSI) presents many of the same problems that

are encountered in the design of processing systems utilizing large scale

integration. These primary problems, which the system architect must fully

consider, are minimum interconnections and a minimal number of unique

parts. The solutions for these problems are many. All solutions, however,

are in accord on one point; that the control logic in a processing system

is highly irregular and it is this irregularity that is directly responsi­

ble for the high number of interconnections in conventional systems.

www.manaraa.com

16

System designers have, in the past, attempted to minimize the amount of

unique control logic by using centralized control schemes. The new ap­

proach to control expanded here could best be described as a distributed

control. However, simply distributing the control logic would not of it­

self make a machine's control logic more regular. Thus a unified control

scheme must be proposed that does reduce the amount of control logic,

A key to the effective use of distributed control is how instruction

and timing information are to be distributed to the functional units of a

machine. One method of distributing this information is the bus-oriented

system. In a bus-oriented system all communication between functional

units takes place on a single bus structure. This bus, while a single

physical bus, can be subdivided into several logical busses each with a

particular function to perform. This technique provides minimal inter­

connections. There are other advantages to using a bus-oriented system.

One, the timing can be asynchronous between functional units. This means

that, if a different hardware scheme for a functional unit is to be imple­

mented, a simple replacement of the old hardware will suffice. Since

instruction decoding and timing are local to a functional unit the rest of

the machine is unaware of the change ; the new functional unit performs the

same tasks at, perhaps, a different rate, A second advantage of bus-

oriented systems is that new functions can be added to the system with

minimal effort.

An alternate method of reducing the amount of irregular control logic

is microprogramming. In microprogramming the control sequence of an

instruction execution is programmed. Thus the control sequence can be

modified by changing the microprogram. Microinstructions are more basic

www.manaraa.com

17

than typical machine instructions and deal with actual gating and similar

signals» This reduces the amount of unique control logic needed in the

machine. Usually microprogram storage is a read-only store (ROS) because

the microprogram does not need to modify itself.

The key points of the above discussion are:

1, A unified control scheme is necessary to reduce the amount

of irregular control logic;

2. Bus-oriented systems reduce the number of interconnections,

increase the flexibility of a system, and are capable of

modularity;

3* Microprogramming reduces the amount of irregular control

logic and increases the flexibility of a system usually at

the expense of performance.

The proposed MSI logic family resembles emitter-coupled logic families both

in speed and functions. Because of the need for a bus-oriented system de­

vices capable of wired-or operation have been provided.

A prime consideration in the proposed logic family is the control

technique to be used. The method of control desired here must:

1. Reduce the amount of irregular logic, i.e., the intercon­

nections ;

2. Result in a minimal number of unique parts;

3. Be adaptable;

4. Be capable of asynchronous operation on the functional unit

level;

5. Be capable of being integrated on at least a medium scale

level;

www.manaraa.com

18

6. Provide functional unit timing»

These requirements result in some constraints upon the design of a control

unit. One important constraint is that, if operation is to be asynchronous

between functional units, some mode of signaling task completion is needed.

If several functional units take part in an instruction execution»a simple

"completed task" signal will not suffice. Secondly, if different instruc­

tions use the functional units in different sequences, then some mode of

changing sequences must be provided. Note that this discussion assumes

that one functional unit does not execute one instruction. This constraint

raises the possibility of parallel operation of two or more functional

units. This parallel operation mode should not be excluded by the control

technique and will, in fact, be desirable.

A hypothetical processor is depicted in Figure 1. A control technique

which meets the above listed requirements has been implemented» The basis

for this control scheme is a control chip, a system clock, and a functional

completion bus. Each functional unit constantly monitors the functional

completion bus. When a particular functional completion code is found,that

functional unit begins operation, Conçiletion codes can be assigned to vary

the sequence of operation. Since the bus is capable of wired-or operation,

parallel functional unit operation can be achieved by requiring a code to

be furnished in part by one unit and the rest by another. Functional unit

timing is derived from the system clock while instruction distribution is

via an instruction bus. The number of functional units is not limited in

concept; the maximum number of l6 has been chosen in this particular imple­

mentation. If necessary, control chips can be cascaded to provide addi­

tional functional unit timing signals.

www.manaraa.com

Functional
Unit r

<

Control
Chip

Fxtnctional
Unit s

Op.
Decoder

Control
Chip

S

Functional
Unit t

Op,
Decoder

Control
Chip

Op.
Decoder

0'
V

(
A A 0/ A

1
Functional
Coŝ letion Bus

A Instruction Bus

\ \

System Clock
\ /

\ / Instruction Completion

Microprogram

Instruction Register

Figure 1, Hypothetical processor control structure

www.manaraa.com

20

The logic for the control chip is shown in Figure 2. This chip con­

sists of a three-bit up-counter, a one-out-of-eight decoder, and a four-bit

latch with comparison circuitry. The up-counter and the one-out-of-eight

decoder are used to generate local timing signals. When proper conditions

exist,the counter is enabled and begins counting at a rate determined by

the system clock. The various states are decoded and generate eight timing

signals which last for one, and only one, clock period. "When counter state

m. is detected,the clock line to the counter is disabled and the counter

is reset. If more than eight local timing signals are desired the chips

could easily be cascaded to generate timing signals in increments of eight.

The disable line is also brought out so that the timing signal could be

disabled by external logic.

The four-bit latch is used to hold a functional completion code.

•When the contents of the functional completion bus match the contents of

the latch,a match signal is generated. This signal can be used to enable

the clock and is also available externally. The latch is loaded from

the functional conçletion bus at the start of an instruction.

The 16 completion codes should be adequate for most purposes. Should

additional completion codes be required,two control chips and a single and

gate would expand the number of unique completion codes to 256. Performing

parallel operations reduces the number of available con̂ letion codes.

The control chip has a complexity on the order of 70 gates. This is

well under the maximum permissable number. The number of pins, i.e,,

external connections, is 19 including the power supply connections.

Bipolar LSI stores have many characteristics that make them desirable

for use in communication processors. Semiconductor stores have a small

www.manaraa.com

FC

FC

FC,

FC

Enable

Reset

•e»-

r Clear

Clear o

Clear o

-̂ 5

Figure 2, Control chip

www.manaraa.com

22

economical module size that make it possible to have different types of

storage provided. A second desirable feature of bipolar semiconductor

stores is the very high performance capability; access times less than

100 ns are commonplace with LSI stores. A third advantage of LSI stores

is that the mechanical assembly teclmology is identical to the assembly

technology for logic.

One possible disadvantage of bipolar semiconductor stores is their

volatility. This means that, if automatic system start-up is to be pro­

vided, some attention must be paid to the initial state of the LSI stores.

Cne solution to this problem will be discussed later. These LSI store

characteristics led to machine organizations which are different from con­

ventional organizations.

To take full advantage of the characteristics of semiconductor stores,

two basic memory building blocks have been included in the logic family.

The first is a small, very high speed device. Access time is assumed to be

less than 35 nanoseconds. The chip is organized as an eight character

(character equals eight bits) array. The chip is fully decoded, and capa­

ble of wired-or operation. The second store chip is a larger, and some­

what slower device; access time is 75 ns with a cycle time of 100 ns to

125 ns. The 512-bit chip is organized as 512-one bit words. Addresses

are fully decoded and wired-or operation is possible. Both storage build­

ing blocks will fit in a dual-in-line 24-pin package, however, the larger

chip is packaged in a l6-pin package to conserve printed circuit 'real

estate',

Figure 3 depicts the small, high-speed memory package. The area

requirements are:

www.manaraa.com

23

2000 mil̂ - storage array

4000 - decoding and word drive

2 2000 mil - sensing and output logic.

This 8000 mila^ is well within the 40,000 mil^ allowed. The speed of the

•«mwn memory is assumed to be in the order of 35 ns« This should be a-

chieved easily using Schottky barrier bipolar technology» The pin connec­

tions are shown in Figure 3*

The eight character configuration of the small memory chip does not

minimize chip interconnections. The advantages of having a complete char­

acter in a single package makes the trade off worthidiile. To minimize chip

interconnections, the input-output pins are shared; this increases the com­

plexity of the chip slightly.

The large storage element is depicted in Figure 4. Assuming a cell

2
size of 20 mil , the 512-bit array area will be on the order of

2 10,000 mil . The remaining area is sufficient for address decoding and

sensing. The next step could be an array of 1024 bits. This size array

would take an area of 20,000 mil which allows some 50̂ of the chip for

interconnections, sensing, and address decoding. The 1024-bit chip should

be achieved without great difficulty; the 512-bit size should be easily

implemented using today's technology.

For arithmetical and logical operations, an arithmetic/logic unit (ALU)

has been provided. This unit is similar to an universal register. The

ALU is one character or eight bits wide and is capable of performing the

following operations on two eight-bit operands: add, subtract, exclusive-

or, equivalence, 'and', and 'or'. The ALU is easily controlled and gives

www.manaraa.com

24

Address 0 Address 1 Address 2

7

V ,, V

8X8 Array

Y

u 7

Chip select

Read/Write

—*—

-<—>•

•c »-

Input/Output

-<f

V'

— —

Sense/Write

Figure 3« Small memory chip

www.manaraa.com

25

Address 8

Address 7_

Address 6

Address 5

512 X 1
Array

Address
Decoder

Address ̂

Address J

Address 2

Address 1

Address 0

Chip Select 0

Chip Select 1
Input/Output

Read/Write

Figure 4. Large memory chip

www.manaraa.com

26

the designer a great deal of flexibility. This approach also results in a

minimum number of unique parts while not making any one chip extremely com­

plex.

One approach in 'universal' register designs has been to include

shifting capability within the register. This approach has not been used

here because of the desire to stay within a 24-pin limit and under the 200

gate limit. A completely general one-character shifter can be constructed

using two bus switches and an and/nand package. To include this shifting

capability within the ALU would increase the complexity of the chip unnec­

essarily.

The output of the ALU is under control of the fourth control pin and

can be statically or dynamically connected to a bus. The type of connec­

tion is determined by the instruction requirements. This mode of operation

gives another dimension of flexibility to the arithmetic/logic unit.

The arithmetic/logic unit block diagram is shown in Figure 5» The

basic mode of operation is to load the two internal registers with the

operands and then perform the desired operation, or operations, upon the

contents of the registers. The six basic operations are sufficient to

perform many processing tasks while not greatly increasing the complexity

of the chip. The total gate count for the ALU is 180 gates which is near

the maximum allowable. The pin connections are depicted in Figure 5*

A bus switch has been included in this logic family to facilitate a

bus-oriented system. The bus switch is depicted in Figure 6, The capa­

bility to connect the complement of a eight-bit character has been included

to aid in performing operations which utilize complements. This capability

has also been included to limit the number of output pins from a latch

www.manaraa.com

27

Co C2

Output Control Carry In

Carry Out

Cg Ci ̂ 0
0 0 0 Add
0 0 1 Subtract
0 1 0 Exclusive Or
0 1 1 Equivalence
1 0 0 And
1 0 1 Or
1 1 0 Load A
1 1 1 Load B

Figure 5« Arithn» tic/Logic Unit

www.manaraa.com

28

Complement Gate Out

Data In 7

Data In 6

Data In 5

Data In 4

Data In 3

Data In 2

Data In 1

Data In 0

Data Out 7

Data Out 6

Data Out 5

Data Out 4

Data Out 3

Data Out 2

Data Out 1

Data Out 0

Figure 6. Bus switch

www.manaraa.com

29

since the complements can be obtained using a bus switch. As pointed out

above,the bus switch can also be used to generate logic functions, e.g.,

using it as for the basis of a shifter. The gate count of the bus switch

is 24 gates while 18 pins are used. This is a very low level of complex­

ity.

The one character latch is shown in Figure 7. This latch has been

included in the logic family to allow for those functions where one char­

acter of storage is desired. A typical application might be an actual

memory address register. The incrementing-decrementing capability could

be achieved by using an ALU chip. The latch has a complexity of 24 gates

and 19 pins.

For generating arbitrary logic functions and for additional storage

and sequential logic functions, three additional elements have been included

in the family. These elements are an and/nand element, with the number of

inputs variable from one to eight, and a JK toggle flip-flop element for

those instances where a local flip-flop is desired. These elements are

only small scale integration; they are very desirable, however, because of

the flexibility that comes from having these units available. Because of

the SSI level, however, it would be desirable to adopt a master slice

approach to these elements. In this approach some number of standard gates

could be fabricated on the chip. The second level raetalization could de­

termine the gate configurations. This approach would greatly increase the

integration level while not reducing the system designer's options.

The two small scale integrated circuits are shown in Figure 8, As

discussed above, the and/nand circuits would be constructed using the

master slice approach. The number of gates included upon a single chip

www.manaraa.com

Figure ?• Latch

www.manaraa.com

H

31

et A

G

D

E

F
H

A'B'G'D'E'F'G'H

A'B'G'D'E'F'G'H

t t+

J K 4

0 0 q(t)

0 1 0

1 0 1

1 1

Figure 8, Small scale integration units

www.manaraa.com

32

should be on the order of 30. This is enough to generate many logic

functions while low enough so as to not result in high inefficiencies in

gate usage on the chip.

The drive capability and speed of this logic family has not been

specified. Typically, current-mode logic is capable of very high-speed

operation in some circuit configurations, e.g., sub nanosecond. To keep

poller dissipation levels reasonable,the speed of this family should be in

the two to three nanosecond range. This should be readily achievable with

today's technology.

The fan-out properties of current-mode logic vary from family to

family. While actual characteristics could not be determined without

performing a detailed circuit design, fan outs from eight to 15 should be

reasonable for this family.

To more fully exploit the power of microprogramming, and of this logic

family, an electrically alterable read-only memory should be used for

microprogram storage. The requirement of writability, coupled with a

requirement for nonvolatile operation, effectively eliminates bipolar stor­

age devices from consideration for use as microprogram storage. While

plated-wire memories have many of the characteristics called for by this

application,the module size necessary for economical operation of a plated

wire memory is larger than desired in this case. The so called program­

mable read-only memories limit the firmware designer to one attempt per

device; there is no method to reprogram the PROM. Current I#OS technology

also has many of the desired characteristics; the performance is less than

that desired, however, A microprogram store which does meet the above

www.manaraa.com

33

requirements is available and has "been used in a test processor. This

memory device is described later.

There are nine elements in this MSI family. This represents a small

number of unique parts. The design of a system -which would use this hypo­

thetical family is discussed in a following section.

Organizational Considerations

The communication processor's primary function is input/output (l/O).

The basic computational tasks for a communication processor are straight

forward and will be discussed later. The l/O technique is of primary

importance when considering communication processor organizations.

The i/o techniques used in a communication processor should have the

goals of minimum interface hardware and maximum flexibility with respect to

the number and type of terminals. Additionally, the communication process­

or is intended to remove some of the burden of supervising the communica­

tion network from the host machine. This has, in the past, been accom­

plished in part by increasing the complexity of the terminals, i.e., making

the terminals more intelligent. This conflicts with the desire of users to

have inexpensive terminals. The addition of a communication processor does

not remove the conflict between terminals and central machine by itself,

however. In effect, the communication processor now is a compromise be­

tween the terminal-oriented tasks and the host machine-oriented tasks.

Most communication processors have, to date, resolved this conflict by

using a general purpose mini-computer as a communication processor and

building elaborate terminal device interfaces. These interfaces are in­

flexible, usually limiting the user to some number of more or less

www.manaraa.com

3^

identical terminals, and expensive because, for example, all character

assembly/disassembly and checking is done by the interface.

To arrive at a more satisfactory solution to the problem a two level

processing capability could be used. The first level would be that level

which is primarily concerned with the host machine and the larger compu­

tational tasks. The first level corresponds to a 'front-end' processor.

The second-level processors would be more terminal-oriented than the first.

This division of tasks could resolve the conflict between inexpensive

terminals and host machine overhead while having many additional benefits,

A primary benefit of the dual communication processor would be that

the second level processor could be used to provide concentration of slow

terminals from remote sites. The second level processor could be con­

structed GO as to greatly reduce the amount of interface hardware needed.

This would result in a greater flexibility than is possible using a one

level system.

If unique machines were to be developed and constructed for the first

and second levels this solution could be expensive. The gain in perform­

ance might not offset the increased price. To make this two-level communi­

cation processor idea an economically viable one the first- and second-

level processors must closely resemble one another in organization and

structure. This means that the decision to microprogram and to have a bus-

oriented system will facilitate this multiprocessor technique. The basic

machine structure will be identical; additional functions could be includ­

ed in the first-level processor only as needed. In fact, the second-level

processor would be a stripped down version of the first-level processor.

www.manaraa.com

35

I/O in coimmnication processing is different from conventional comput­

er I /O in that, in conventional computing, the conçruter initiates all L/O.

That is, the central machine reads or writes data to from or to some device

when it desires to do so. In communication processing the terminal devices

initiates l/o in some random manner to the communication processor. This

necessitates a somewhat different approach to L/O.

There are two basic techniques for communication processor l/O;

polling and contention. In polling, each terminal device is tested to find

out if that device presently needs service. This testing proceeds under

the control of the communication processor. In this manner,some control of

over terminal devices is established. In contention, terminal devices

interrupt the communication processor when service is needed; terminals

contend for processor time. Because it is desirable to mix terminal types

and hence, transmission speeds, simple polling is usually less efficient

than contention. This is because the polling rate, i.e., how often a ter­

minal is tested, mist be at least as fast as the fastest terminal's data

rate. Thus a slow terminal would be tested many times over what would

actually be necessary. In a contention system, however, the efficiency is

high because terminals ask for service only when service is needed. Con­

tention tends to be more expensive in terms of hardware than polling.

The basic considerations when using a polling scheme are that the

testing time and the time around the polling loop should be kept as short

as possible. In addition, a polling scheme should be as flexible as possi­

ble with respect to the number of terminals polled. The time around the

loop is a function of the amount of service each device needs. This

www.manaraa.com

36

directly affects the structure of a communication processor and, indirect­

ly, the organization.

The basic computational tasks of a communication processor are

assembly/dissassembly of characters, queueing of data and control informa­

tion, formatting of data, character searching, error detection and correc­

tion, code conversion, and real-time housekeeping. Note that maintenance

of pointers, table look-up procedures, and character manipulation are the

primary tasks. Arithmetic capability beyond that needed to perform those

tasks is not necessary.

The division of tasks between the first and second levels has been

discussed earlier. Those tasks which are terminal-oriented should be

assigned to the second-level processor. A typical second-level processor

task would include character assembly/disassembly» This function would,

for example, remove the start/stop bits from a asynchronous character

before sending the character on to the first-level processor. This would

allow greater communication efficiencies. In synchronous transmission

special characters would be detected, under program control, and proper

action taken. These special characters would include End of Message and

other similar characters. Also basic error detection tasks would be

assigned to the second-level processors.

The primary tasks of the second-level processors would be to act as

a programmable interface to terminal devices and to perform as a data

concentrator. The second-level processor would be capable of remote opera­

tion and would result in higher communication efficiencies because of its

ability to act as a concentrator. In a similar manner, terminal inter­

faces would be easier to implement resulting in savings for the user. The

www.manaraa.com

37

intelligent terminal is not excluded ty this technique, however. The

flexibility of the communication system should be such that user needs

determine the type of terminal, not communication and host machine needs.

The second-level processor should be capable of modularity on a

small incremental basis. That is, it should be relatively inexpensive for

a single user to go on-line. If, for example, a module size of 16 inter­

faces is adopted as the smallest add-on, the price for 17 interfaces would

be prohibitive. Thus a small increment of, say, one or two would be pref­

erable. This should not make those instances where a large number of

terminals are to be added more expensive, however.

The computational requirements upon the first-level processor are

essentially the same as those of the second—level processor. Generally,

those tasks which require larger amounts of memory should be performed in

the first-level instead of the second. Code conversion is an example of

a first-level processing task. The instruction set of the first-level

processor will need to be more character-oriented. The bit handling capa­

bility that is desirable in the second will not be so desirable in the

first level.

Because several second level processors could feed into a single first-

level processor,a contention system will probably be necessary. The

combined data rate could be very high and, unless the service times were

very short, would overburden the first-level processor. In addition, it

might be desirable to handle a few terminals which have very high data

transfer rates e.g., drum memories. This points out, once again, that the

flexibility achieved through the use of microprogramming and bus-orienta­

tion is highly desirable.

www.manaraa.com

38

Both first and second level processors will need to facilitate the

use of subroutines. The nature of coimunication processing is that many

similar devices will be serviced with only a few parameters changing from

device to device. Thus, if programs are written in terms of subroutines,

the necessary storage space is reduced because the same subroutine with

different parameters will suffice for many similar devices.

www.manaraa.com

39

COMMUNICATION PROCESSOR STRUCTURES

The system characteristics of a processor lAiich are visible to the

programmer constitute the structure of the machine. Structure differs from

organization in that organization is concerned with data flow paths and

control techniques. Structure is concerned with how a programmer can use

those organizational features to perform efficient processing.

Communication processors should make queue and list maintenance easier

and minimize the hardware necessary to interface various terminals. The

organization requirements imposed by these considerations has been pointed

out. The structure considerations will now be discussed.

Structure Considerations

It is possible to use a general purpose machine as a communication

processor. The instruction set of the standard mini-computer tends to be

very heavily biased toward arithmetic operations, however. This approach

results in device interfaces that are relatively complex. A primary con­

cern of the communication processor architect should be to reduce the

amount of logic necessary to interface a terminal, device. This means, in

general, that the instruction set should be capalxLe of small, low level

operations lAen dealing with a terminal device.

A second basic consideration of the system architect must be the

amount of processing accomplished by his instructions. That is, are the

instructions to be macroinstructions, accomplishing a large amount of proc­

essing, or are the instructions to be more micro, accomplishing a limited

amount of processing? A basic factor in making this decision is the speed

of the program store. If the program store is slow, then a more macro-

instruction might be required to keep the speed of execution at a higher

www.manaraa.com

40

level. If, on the other hand, an extremely fast program store is available,

the instruction set can be more basic -with less frills. Instructions which

are very large, i.e., accomplish much processing, tend to require more

hardware. This conflicts with the desire to have an inexpensive and basic

machine. Small instructions, on the other hand, require less hardware in

the processor while storage needs might be increased. The increased stor­

age is not a certainty.

The requirements of communication processing are complex. At one end

of the communication system are the terminals; at the other the host

machine. There is an overpowering need for flexibility in the instruction

set of the common processor. The more basic instructions are more flexible

in that more macroinstructions could be generated using these basic

instructions. If very powerful macroinstructions are implemented in hard­

ware, the flexibility of the machine could be limited because the complex

macroinstruction could be ineffective at one end of the conmainication proc­

essing network. Hence, the instruction set should be basic, with small

instructions.

As an example of this approach, take a shift instruction. A shift

instruction might be capable of selecting some register and making n shifts

with certain end connections. A more basic instruction set would liave a

shift instruction which would shift one place only. Thus, multiple shifts

would need to be programmed.

The basic instruction approach minimizes the hardware necessary to do

the job, reduces the length of the instruction, and is more flexible by

virtue of the fact that the programmer, in effect, generates his own

macroinstructions. This does not mean that the basic, arithmetic-oriented

www.manaraa.com

41

instruction set of the standard mini-computer is the best instruction set.

The particular instruction set must facilitate those communication-

oriented tasks described in the preceding sections.

An example of the type of instruction set being advocated is the

instruction set of the actual communication processor which is described

in Appendix A, No detailed description of an instruction set for the

hypothetical processor is given because the instruction sets would be

virtually identical» Examples of programs are given in Appendix B. A

following section will describe how these instructions are to be used in

communication processing as well as a general look at the structure of the

particular machine.

www.manaraa.com

42

A MSI COMMUNICATION PROCESSOR

The basic considerations in designing a communication-oriented proc­

essor have been discussed in the preceding sections» The details of an

MSI logic family were also presented. To show how the assumed technology

affects communication processor organization, the design of a hypothetical

MSI communication processor will now be discussed. While this processor

is hypothetical, it bears a close resemblance to an actual processor. The

details of the organization of this actual processor are discussed in a

following section. The conclusions of this thesis report on some of the

results obtained from this actual processor. The rest of this section

deals entirely with the hypothetical processor.

One primary consideration in the design of microprogrammed machines is

that of nieroinatruetion. The two primary approaches to microprograimning

are referred to as horizontal and vertical. The first results in long

microinstructions lengths. This is because, in horizontal microprogram-

BiiiiS;each bit has some dedicated meaning. Thus one bit could, for exançjle,

control a gate signal. In vertical microprogramming the microinstruction

is coded; a group of bits can carry several meanings, e.g., gate into one

of eight registers. Vertical microprogramming results in shorter word

lengths lAlle more words of storage might be needed as well as more decod­

ing logic on a per data bit basis.

Because of the desire to keep the instruction word relatively short,

the decision was made to use either eight- or l6-bit instructions. The

great majority of the instructions are eight bit instructions with some 16-

bit instructions for those cases idiere additional information or parameters

www.manaraa.com

are necessary. The following section describes the instructions in more

detail. Only the actual processor's instruction set is described.

The block diagram of a î'ISI communication processor is given in

Figure 9. Basic processor communication is on two busses, the M or Memory

bus and the FA or Flag Address bus. Both busses are eight-bits wide and

bidirectional. The H-bus is the primary machine communication bus while

the primary function of a FA-bus is to address the flag and data arrays.

This addressing operation is described below.

The scratchpad store is to be used for holding data and parameters.

Input/output queues and tables would be stored in the scratchpad as well

as any otlier information which is to be altered. The scratchpad store

would be constructed using the large memory chip of 512 bits. The scratch­

pad would be n words by eight bits where n-̂ 64l(. The store would have an

access time on the order of 100 ns and a cycle time of 125 ns.

The scratchpad store is addressed by the address store. The address

store would be constructed using two small, high speed chips in parallel

to give eight l6~bit addresses. The first four locations of the address

memory would be used as scratchpad store address registers. These four

address registers are subdivided into two parts, a word register and a page

register. These registers are accessible by program control as eight-bit

registers.

The reason for this type of scratchpad addressing are twofold. First,

in the preceding section it was pointed out that a basic need of communi­

cation processing is the ability to process and. maintain strings of charac­

ters and queues. To facilitate this processing capability,the processor

has been given four storage-address registers. Thus, pointer maintenance

www.manaraa.com

M-Bus
A

ALU

Functional Completion Bus

A

5715

V

A

General
Purpose
Regs.
8 x 8

A A A lS

V

y

Control <1

<=>
Scratchpad Store
512 X 8

125 ns Access

Address
Store
8 X 16

A A

?lag Address
Bus

Instruction Bus

V: _V

A

Figure 9* MSI processor

www.manaraa.com

45

wo-uld be easier because pointers, queue addresses and similar addresses

could be saved and manipulated. The single address register concept would

be very limiting because of the constant movement of data and control

information from one queue to another, for example.

The second reason for this mode of storage addressing relates to the

desire to have relatively short instructions. The use of general address

registers provides an element of indirection; the instruction need only

specify the address register to be used and not the address itself.

A benefit which is derived from this approach is that the require­

ments upon the program memory are relaxed. If an address were to be con­

tained in an instruction, then either a dynamically writable program memory

would be required, or a method would have to be devised by which address

information could be modified after being read out of a read-only store.

The organization described above does not favor either a read-only store

or a writable program store.

The high order four locations of address memory are to be used as a

push-down stack. The hardware push-down stack xrould greatly facilitate

subroutine linkage; the programmer need not worry about storing a return

address. As pointed out in the preceding section,subroutines form an

important part of communication processing.

The access time of the address memory is 35 ns. Note that, because

the high speed memory device is used, very little speed penalty is paid

for this type of organization.

The basic arithmetic/logic capability of the processor is furnished

by the arithmetic/logic unit. The ALU would be constructed using the

basic ALU chip; this ALU would be shared by the entire machine » For

www.manaraa.com

46

example, the basic instructions, e.g., add, would use the ALU. The

scratchpad address registers would also use the ALU for incrementing and

decrementing. This sharing of logic would keep the hardware cost at mini­

mal levels. The ALU is capable of very high speed operation, on the order

of ?.0 ns, and would perform well under such conditions.

To provide temporary high-speed storage, a file of general-purpose

registers has been provided. These 'registers' would be constructed using

a small, high-speed memory chip and would be used for holding operands and

data. In addition to the above purpose, general-purpose register seven

(GP?) would be used as a special purpose flag address register. This func­

tion is explained below.

To minimize hardïvare,a polling scheme has been adapted for this proc­

essor» The polling scheme adapted functions as follows. The flag array

and data array are shown in more detail in Figure 10. There is a one-bit

flag flip-flop associated with each terminal device. In a corresponding

manner each terminal has a data register associated with it. The data

register can be from one to eight bits long,depending upon the character­

istics of the terminal device.

Typically,polling would proceed testing by a single flag bit at a time.

Because of the desire to increase the efficiency of the polling scheme, and

to allow more freedom in terminal speeds, a group-polling method has been

adapted, A flag register is made up of individual flag flip-flops; the

maximum length is eight bits. During a poll an entire flag register can be

tested at once. If any bit is true, then further testing is done to find

out which device within that flag register needs servicing, Iflien the serv­

ice routine is completed, polling proceeds with the next flag register.

www.manaraa.com

c

Wlag
Register
i

A

A

Wlag

A

V •'lag
Register Register
m Ws

M-Bus
7\

y Data
Array
i

A

TV

Si

A

Data
Array
m

V.

A

Data
Array
s

A

FA-Bus

Figure 10. Flag and data section

www.manaraa.com

48

The flag registers are addressed via the flag address bus as are the

data registers. General-purpose register seven is used as a flag address

register and also as a general usage register. This gives the system an

additional dimension of flexibility.

Flag registers can be from one to eight bits in length. This allows

a kind of priority structure within the machine. A high priority device,

e.g., a high speed CRT, would be assigned to a one-bit flag register. Slow

speed devices would be grouped into a single flag register of eight bits or

less, e.g., eight teletypewriters. This could give the CRT a priority over

the teletypewriters. The actual processing technique to be used would

determine the priority. The organization permits the use of this kind of

technique. The number of flag registers has been limited to 16. This

would allow up to 128 terminals. Other considerations would probably limit

the number of terminals to a somewhat smaller number.

Figure 10 depicts these flag registers (FR) with the associated data

registers. Flag register i has four terminal devices represented; all four

devices are serial devices. Flag register m has eight devices; two of the

devices are seven bit parallel devices while the remaining six are serial

devices. The remaining flag register, s, has but one terminal device. The

data array in this case consists of a single eight bit register.

This organization treats each input/output port of the communication

processor in an identical manner. While some ports might have a priority

over other ports in a particular polling scheme,the organization is identi­

cal, This eliminates special channels from the communication processor in-,

to a host machine and gives the communication processor a greater flexibil­

www.manaraa.com

49

ity. Any port can communicate with any other port. The only limitations

are buffer size (speed) and protection considerations.

The control section of the processor is depicted in Figure 11, The

basic elements of the control section are the program store, tlie program

store address register (PSAR), and the control logic chips. The control

scheme to be implemented is identical to the MSI control technique.

The dual requirements of very high speed and electrically alterable

operation pose a complex problem. As was pointed out in a preceding

section, many current EAROM technologies are limiting either in alter-

ability or speed characteristics. One technology which fits very nicely

into the communication processor niche is the OVONIC memory cell. The

OVONIG cell is basically a diode resistor type memory. Hence, the speed

capabilities of the cell seem to be limited only by the diode storage time.

In addition, the OVONIC device can be written in a straight forward manner.

At present OVONIG devices exist which can be written many times; individual

devices have an assured lifetime of 100,000 writing operations.

The communication processing task is such that, once a given terminal-

machine configuration is running, there are few changes on a day-to-day

basis; the program set does not change. In addition, as was pointed out in

a preceding section, it is very desirable to have a microprogram store

which can not modify itself. Self modification can lead to program errors

which would be especially disastrous in a remote, unattended processor.

The OVONIC memory technology lends itself quiet nicely to communication

processing. The cell is nonvolatile, fast, and writable.

www.manaraa.com

Instruction Bus

Functional Completion Bus

System Clock

Instruction
Register Character Two Register

Page

from M-Bus
Word

Program Storage Address Register

Storage
Control

Program
Storage

Figure 11. MSI control section

www.manaraa.com

51

An instruction control sequence would proceed thusly:

Step

0

1

Action

Access program memory/load instruction

register

Decode instruction

2 Set functional completion codes

3 Start execution

n Signal instruction completion

There are two methods to set functional completion codes. The first

would be to carry completion code information in the program memory. This

would mean that either instructions for loading functional completion codes

would be included in the instruction set or that a single instruction would

carry functional completion codes for all functional units. The second

alternative would be to set functional completion codes with combinational,

hardwired logic. The second alternative gives higher performance levels

than the first and would be used. The flexibility of the second approach

is less than the first but the higher performance and shorter memory word

of the second approach are the primary considerations here.

The functional completion bus is four bits wide. As can be seen from

the system block diagram (Figure 9) there are six functional units. Thus

16 functional completion codes are adequate.

The PSAR is subdivided on a page, word basis. Incrementing is auto­

matic and is continous across page boundaries. Note that the PSAR could

www.manaraa.com

be constructed using two ALU chips and two eight-bit latches. This demon­

strates the generality of the ALU.

The decode/timing unit controls the program memory. This unit would

also provide the system clock signal to the system. The system clock rate

would be determined by the program store access time as well as functional

unit requirements.

There is, in addition to the eight-bit instruction register, a charac­

ter two register. This register would be used to hold the second character

of a two-character instruction. This mode of operation simplifies the

design of the local instruction decoders somewhat. The contents of the

character two register are distributed on an eight-bit bus which is not

shown for simplicity.

There is a data path from the program store to the PSAR. This is to

facilitate juiqps and similar operations. In addition, a data path from the

M-bus has been provided so as to facilitate macroinstruction execution.

The program store can be expanded to 256 pages» Each page contains

256 words. The amount of program storage needed should be considerably

less than the maximum amount, however.

In a preceding section, mention was made of the problem of scratchpad

volatility. To achieve automatic start up along with fast operation the

follovdng solution to the problem of scratchpad volatility will be used.

Certain information would be stored, on a more or less permanent

basis, in the program store. This information, upon a cold start, or re­

start, would be loaded into the scratchpad store. Thus parameters and

sijtnilar information could be retained even though a power outage. When a

system clear is executed,a small program would move information from the

www.manaraa.com

53

program store to the scratchpad store. This would permit the programmer to

always use the high-speed scratchpad as his working storage. After execu­

tion of the initialization program,the machine could proceed on a polling

loop.

The organization that has been presented is some'what biased toward the

requirements of the second-level processors. As pointed out previously,

the general requirements of the first level processor are very similar to

those of the second level processor. The organization presented here is

flexible enough to fit in either slot. The possibility exists that a ma­

chine that is limited to strictly polling might be overburdened in the

first level position. Thus the use of a bus-oriented organization is very

important. Data paths have been provided so that an interrupt structure

could be easily added to this machine. For example, the data path from the

M-bus to the PSAR could be used to inqplement hardware interrupt handling.

To be sure, additional hardware and programming effort would be necessary.

It is significant that this capability could be added without a major

redesign.

I

www.manaraa.com

54

A TERMINAL PROCESSOR

A small terminal processor which closely resembles the hypothetical

processor discussed in the preceding sections has been construe bod. This

terminal processor is intended for use as a second-level processor. The

organization of this machine is very similar to the hypothetical processor

as is the structure. Appendix A describes the instruction set of the ter­

minal processor in detail.

A block diagram of the terminal processor is given in Figure 12.

Instructions are distributed to functional units by the instruction bus.

Both the instruction and its complement are distributed; instructions are

decoded locally. The instruction bus is 16 bits wide; eight bits and their

complements. Functional unit timing signals are generated from a two-phase

system clock. Each printed circuit board has a local clock which can gen­

erate up to 16 timing phases. These 16 phases are distributed to the func­

tional units on that printed circuit board. The 16 local timing signals

are generated using an eight-bit shift register. An instruction completion

signal (TOS) restarts the timing shift registers at time zero (TO). In

this manner the instruction execution time can be varied.

The functional completion bus was not implemented in the terminal proc-

essOT. The idea of using a functional completion bus ivas partially a

result of early work done on the actual processor. Unfortunately, the idea

was developed to late for inclusion in the actual machine.

The terminal processor has three data busses; the Memory bus (H-bus),

the Flag Address bus (A-bus) and the Flag Data bus (F-bus). These busses

are bidirectional, carry true data, and are eight bits wide. The M-bus is

the primary system communication bus. The A- and the F-busses are used to

www.manaraa.com

Instruction Bus

P-Bus

FI
Reg

FA
Reg

Reg
II

Reg Flag
Array

Data
Array

A-Bus

Figure 12. Terminal processor

ALU

Reg

Reg

PSAR

Address
Store

Program Store

Scratchpad
Store

www.manaraa.com

56

move data and control information to and from the Flag/Data section of the

processor. In addition, the A and F-busses are the operand busses for the

ALU.

The three-bus organization allowed the ALU's registers to be used as

general working registers in the actual machine. This minimized the logic

somewhat. The ALU of the hypothetical machine contains two operand reg­

isters, hence a two-bus organization -was sufficient.

Program storage for the terminal processor is in the Program Store

(PS). The PS has been implemented using an OVONIC read-mostly memory. The

basic memory chip is a 256-bit unit which consists of a 16 x 16 OVONIC

device and diode array. The OVONIC memory device provides the high-speed

and writability required by the terminal processor. In addition, the

OVONIC device is nonvolatile which is an important point for this proces­

sor.

The Program Storage Address Register (PSAR) is incremented at the

start of an instruction. The access time of the PS, therefore, is simply

the time needed to gate the outputs of the memory cells into a latch. This

approach was taken so as to minimize the access time; some 30 to 40 ns were

saved. The PS cycle time is less than l60 ns. No instruction requires a

cycle time of less than 160 ns, however,

A block of 256 eight-bit characters has been implemented in the ma­

chine. Additional program storage will be added in the near future to

support additional firmware»

The scratchpad store is a high speed semiconductor memory which

utilizes Schottky bipolar technology. Memory access time is 60 ns from

address in to data out, A capacity of 256 eight-bit characters has been

www.manaraa.com

57

implemented. While the amount of scratchpad could be expanded the follow­

ing approach would seem to be more practical. A large core memory could

be added on as input/output device. The processor would contôjiue to use

the scratchpad store as the working store. Under program control addition­

al information would be shuttled between the high speed scratchpad and the

slower core. This would give the processor a "hierarchy" memory of sorts.

The idea of an address store has been used in the terminal processor.

Because the actual chip used to construct the address store is organized

as 16 four-bit words, the file registers have been included in the address

store. The purpose of the address store is to provide multiple storage

address registers. These storage address registers are accessible from the

machine under program control. This gives the machine additional flexi­

bility, Not depicted in Figure 12 is a data path from the Address Store to

the ALU via the A-bus which permits the use of the ALU for storage address

register incrementing or decrementing.

The Address Store is segmented in the following manner. The first

four addresses are used as a push-down stack for the program memory. This

allows nesting of subroutines up to four deep. The second four addresses

are the Scratchpad Storage Address Registers (SAR's), The remaining eight

locations constitute the file registers.

The scratchpad input register (S-Reg) is used to hold data during a

scratchpad write. The S Register can also be used as a general register.

The S Register serves as the implied destination for those two operand

instructions I'Aiich use the ALU.

A more detailed diagram of the flag registers and data arrays is given

in Figure I3, The flag/data section is the l/O section of the processor.

www.manaraa.com

58

Flag Flag Flag

M-Bus

Flag
Index
Register

Flag
Address
Register

• • •

A-Bus
Z)

F-Bus

Data Array^ Data Array^ Data Array-j^^

Figure 13= Flag/data iinit

www.manaraa.com

Each terminal device has a 'service needed flag' flip-flop (called a flag

flip-flop) associated -with it. This flag flip-flop is physically located

in the processor. Flag flip-flops can be grouped into registers of up to

eight bits. These registers are called flag registers. The maximum number

of flag registers is 16. •

Associated with each terminal device is a data register. The length

of a data register is determined by the terminal device. Serial devices

would have a data register of one bit. Terminals that are parallel data

transmission devices would have longer data registers. If more than eight

bits are to be transferred to a terminal device at once, a word assembly

would be required. Thus, for example, if a l6-bit device is to be inter­

faced, two characters would be moved from the processor to the interface.

The flag/data section is addressed via the A-bus. The Flag Address

Register (FAR) and the Flag Index Register (FIR) are used to hold flag

address information. Both the FAR and the FIR are four-bit registers.

The FAR and the FIR correspond to the GPR? in the hypothetical machine.

The FAR selects a flag register while the FIR selects a bit from the pre­

viously selected flag register• The three most significant bits of the FIR

are used to select the flag bit. This permits the storage of two charac­

ters of information at the location in page zero which can be accessed

using an RPS instruction vâiich is explained later. For purposes of data

movement the FAR and FIR can be treated as a single eight-bit register

(the FAIR). The four bits of the FAR occupy the most significant bit

positions of the FAIR.

The arithmetic/logic unit (ALU) is depicted in Figure 14. Registers I

and II are shown in the ALU but are, in fact, general purpose registers.

www.manaraa.com

60

A-Bus

r
A

r
A

A General 1
Purpose 1

V L L 4 Register V

F-Bus

ïï

Adder Shifter

V

'Logic'

y

TV

General
Purpose
Register
n

7T
•

r̂om
Program
femory

sj M-Bus I

0
S-JRegister

Figure 14. Arithmetic/logic xmit

www.manaraa.com

61

The ALU consists of an adder/subtracter, a shift network, and an 'or'

circuit. 'And' capability is achieved by gating two registers onto the

same bus at the same time then gating the contents of the bus into a third

register. The result is the 'and' of the two registers.

The ALU is shared by the processor. Arithmetic/logic type instruc­

tions utilize the ALU during operation as do certain comparison instruc­

tions. In addition, the ALU is used to increment or decrement the SAR's.

Subtraction is in two's con̂ lement. That is, given two operands and

the command to subtract the ALU forms the result in two's complement. The

add over flow flip-flop captures any overflows idien addingj it can be test­

ed by iostruotion (SA.V).

A combinational shifting network has been included in the ALU. This

network extends a shifting capability to all working registers in the

machine. This approach is less expensive than giving each individual re­

gister a shifting capability.

Processing Techniques

In the design of any communication processor certain special instruc­

tions can be included if these instructions result in a significant per­

formance increase or a decrease in cost. These special instructions can

be justified only if the task warrents theic inclusion. Special instruc­

tions which are not used do not increase performance. This fact immedi­

ately eliminates such instructions as a floating point add from the commu­

nication processor.

The organization of the communication processor was oriented toward a

polling scheme. Thus, certain instructions have been included to make

www.manaraa.com

62

polling more efficient. A description of how these instructions would be

used follows.

The FAIR has the special purpose of addressing the flag and data

arrays. The FAIR is divided into the FAR and FIR. The FAR is used to ad­

dress a particular flag register or data array. The three most significant

bits of the FUI are used to address a particular bit in the flag register

or register in the data array. Two special instructions have been included

to increment the FAR and the FIR. These instructions are Increment Flag

Address Register (IFAR) and Increment Flag Index Register (IFIR)u In ad­

dition, IFAR performs a zero test upon the contents of the FAR after the

increment. If the FAR is zero, the contents of the next program store ad­

dress are placed in the FAR. This provides a method of controlling the

length of a polling loop. The length of the loop can be changed by re­

writing the location following the IFAR instruction.

To permit using the program store for a nonvolatile storage of

permanent parameters, a Read Program Store instruction has been included.

Read Program Store uses a programmer selected register as a page zero ad­

dress. The character read out is placed in the S register. This mode of

operation could be used, for example, to perform a table look-up when a set

flag is detected. The table would contain a starting address for the ser­

vice routine.

The maintenance of multiple communication queues is not very sequen­

tial in nature even though the queues are verv sequential in nature,

I'rooessing usually involves moving data from one queue to another as well

as u%)dating queue pointers. Because of this characteristic the standard,

automatically incrementing/decrementing scratchpad address register is not

www.manaraa.com

practicplly useful in communication processors. This is especially true in

a processor in which separate stores are used for program and for data.

The organization presented previously took this characteristic in.to ac­

count, The instruction set includes special instructions which are to be

used for the sole purpose of incrementing and decrementing scratchpad ad­

dress registers. This approach allows for more flexible use of the

scratchpad store by virtue of the fact that the programmer is responsible

for incrementing or decrementing the scratchpad store address registers.

Bits in an instruction word could be used to specify an increment or dec­

rement after each read or write operation. The short instruction word

and added flexibility are preferred, however, as is the more basic type of

instruction.

A certain number of instructions must be dedicated to l/O. Since

carrier communications are serial in nature, instructions have been included

to aid in serial l/O. In addition, l/O clock control has been included in

the instruction set. This implies that no bit counters and similar devices

are required within the individual devices* interfaces.

The majority of the rest of the instructions are skips and branches.

That is, after a test which is not satisfied the next n locations are

skipped. An example of this type of instruction is Zero Test Flag Charac­

ter (ZTFC). This approach is implemented to keep the instruction word

short. Note that the basic serial devices would be handled using the zero

test and set data instructions rather than a move command.

A group of unconditional branches relative to the current location

have been included. This, once again, has been done to keep the instruc-

www.manaraa.com

64

Lion» short. A jump relative to the current location is not always ade­

quate, however. Thus an absolute jump must also be provided.

The remaining instructions are those instructions that are. more famil­

iar to the computer user; add, subtraction, shift, etc. The terminal proc­

essor uses implied sources for the operands as well as an implied destina­

tion. This would probably not be the case in the hypothetical communica­

tion processor. The file registers provide an extra dimension of flexi­

bility which would be decreased "ty the use of implied sources. The use of

an implied destination would be retained, however, to keep the instruction

word as short as possible.

The terminal processor has been constructed using high powered Tran­

sis tor-Transistor Logic. Transistor-Transistor Logic does not have many

of the exact characteristics of the proposed MSI family but does have many

MSI functions. In addition, TTL is very inexpensive. The processor, less

memories and l/O section, used about 300 TTL circuits, both MSI and SSI.

The system is constructed upon printed circuit boards vhich. are 11" by 14".

Each board could contain a maximum of 144 integrated circuits; the actual

high is 130. The system interconnections are provided by a 88 pin bus via

two 44 pin connectors.

The I/O section, i.e., the Flag and Data arrays, is also constructed

on 11" by 14" boards. There are eight data set interfaces and associated

logic on a single board with a IC count of about 125. Data rates can be

easily varied on an individual interface basis by changing a pair of capac­

itors. Start-stop bit decoding is, of course, a function of the program

and not the hardware.

www.manaraa.com

65

The entire processor is enclosed in a 17" 22" by 13" housing com­

plete with power supplies, cooling and front panel control switches. This

size of enclosure could have been reduced had not a commercial power supjûy

be used. The project was to be completed in to short a period of time to

warrant development of an adequate power supply. The conclusions of this

thesis report on the results obtained from this processor as well as com­

paring its performance with other communication processors.

www.manaraa.com

66

CONCLUSIONS

This thesis has discussed the application of the new integrated

circuit technology to the problems of communication processing. There

are several key contributions which are summarized in this section. In

addition, the results of the terminal processor project which experimen­

tally verify many of the proposed concepts are outlined.

A MSI circuit family has been proposed idiich solves the three most

important problems encountered in designing systems with MSI components.

The first problem solved is that of reducing interconnections. A MSI

family which does not take into account system and chip interconnections,

i.e., does not reduce interconnections, is not a viable MSI family. The

proposed logic family reduces system interconnections facilitating a

bus-oriented system. This is of critical iaçxsrtance in MSI system design.

The second problem solved by this logic family is that of minimal

unique parts. The family, which contains nine parts including memories,

does not limit a system designer to some standard machine. The designer

is free to design an unique system. The complexity of the circuits is

close to the current state-of-the-art; the nine MSI elements are practical.

The third problem solved is more subtle than the first two. This

problem is that of control technique. The question of how control sequenc­

ing is to be done is of major importance when designing a MSI logic family.

The solution described herein is an unique and viable one. The flexibility

and generality of the control chip is great. The control technique can be

expanded to many functional units. The functional units can operate seri­

ally or in parallel. Local timing pulses are generated; the number can be

www.manaraa.com

67

greatly expanded. The system designer has total freedom in designing func­

tional units; there are no restrictions.

A MSI communication processor "which utilizes the MSI logic family has

"been described. This communication processor shows how system architects

can adapt a standard MSI logic family into an unique system. The MSI

communication processor reflects the influence of the universal register

approach to LSI architecture as does the MSI family. It is significant

that it has "been shown that this approach can be adapted into a special-

purpose machine. The organization of the communication processor is unique

and specialized; the logic family used in the design is unique but not

specialized.

There are three organizational features in the MSI processor which

make it a useful communication processor. One, the flag/data register

concept and the polling technique reduce the interfacing hardware. Two,

the indirect addressing method gives the machine a great deal of flexi­

bility in queue maintenance. Three, the use of a bus-oriented system de­

sign gives the machine modularity at a low level.

A small version of the MSI processor has been designed and built.

Since work on the two processors progressed in parallel not all the fea­

tures proposed for the MSI processor were included in the actual processor.

The most important feature not included was the functional completion bus.

Initial testing has shown that the instruction execution rate of the proc­

essor is on the order of three million instructions per second. This rate

is adequate for the second-level processing tasks. Programs have been

written to aid in evaluating the machine. These programs indicate the

maximum data rate that could be supported by the processor would be between

www.manaraa.com

68

50,000 and 100,000 bits per second. This assumes serial devices. This

would enable the processor to perform second-level processor functions for

up to 128 low-speed terminals which is the maximum addressing capability

of the machine.

A major point of this thesis has been that a second-level processor

should minimize the device interfaces. The terminal processor data set

interfaces, flag flip-flop, data register, and control circuitry amounts

to 15 small-scale integrated circuits per line. This is a small amount of

logic. Thus, the organization presented does minimize the problem of

interfacing.

The data rates above were calculated based on a strictly sequential

polling loop. This indicates that group polling is a viable technique.

The performance of the processor compares quite favorably with other, sim­

ilar processors.

lite western proposed by Burner et al. (lb) was a two-level system in

which the second-level processor is a Interdata Model 3« This dual level

processing scheme was able to support only 64 low-speed terminals. In

addition. Burner's system would support only two different data trans­

mission speeds; the flexibility of the system was very limited.

There are many commercial communication processors. Two, which are

representative of this kind of processor, are the Microsystems Model 812 and

the Varian 520/DC Communication System. The Microsystems 812 is a micro­

programmed machine ; the microinstructions are 16 bits. The ROS has a cycle

time of 220 ns. The second-level processor is not a separate entity in the

812. The 812 is, in effect, both a first-level processor and a second—lev­

el processor. The first-level processor is macroprogrammed by the system

www.manaraa.com

69

programmer, the second-level processor is in the firmware and device inter­

faces, and can not be programmed without a change in the ROS. The 812 can

handle up to 32 low-speed lines. These 32 lines are added in groups of

eight and all eight lines must be identical in speed and start-stop codes.

Each group of eight lines requires 64 characters of memory.

The terminal processor can handle up to 128 low-speed lines. Each

line can be different both in speed and code. The terminal processor, with

a Program Store having a bandwidth of only 2/3 that of the 812, is able to

achieve throughput on the order of four times greater than that of the 812.

This is due to two reasons. First, and most importantly, the organization

was intended strictly to enable high data rates and maximum flexibility.

The organization does that. Second, the use of a bipolar scratchpad has

increased the terminal processor's throughput over what would be obtained

using a core memory. This is one inçiortant reason that semiconductor

stores are very desirable; the price/performance ratio is very good in low

capacity memories. The terminal processor requires, in the sample pro­

grams, only five characters of scratchpad storage per line. This is

slightly less than the 812.

The Varian 520/DC is a two-level processor. The first level is a

Varian 520/i, a mini-computer. The second level is a hardwired data commu­

nications controller. This controller can only be used with a 520/i; it

has no remote capability; stand alone operation is not possible. The

controller is a hardwired second-level processor. The flexibility of the

controller is achieved by programming the 520/i, The controller is a

special l/O device which requires specialized software support. The

controller has 10 characters of semiconductor storage per line. Its

www.manaraa.com

70

performance levels are quite high. The Varian 520/dC has a capacity of 64

1200 "baud lines. The terminal processor could handle on the order of 40

1200 baud lines at best. This demonstrates the fact that microprogramming

usually results in a somewhat reduced performance. It is significant,

however, that the specialized terminal processor can handle two thirds the

load of the hardwired machine. This speaks well for the polling technique

and for the organization.

In conclusion, a viable, state-of-the-art approach to communication

processing has been described. This approach has been shown to be practi­

cal and realistic. The approach is not based on present day computer

architectures but is based on what computer architectures will be in the

near future. Computer system architectures are changing rapidly because

of the semiconductor industry. The system architect must be aware of, and

involved in, the advances of semiconductors.

www.manaraa.com

71

UTERATORE CITED

1. Hartung, A. F. Computer communications - An Overview. IEEE Convention
Record. 1971.

2. Police, IHiomas N, Time-shared computer systems. In Alt, F, L. and
Rubinoff, M., eds. Advances in Computers. Vol. 8. Pp. 1-45.
New York, New York, Academic Press. 1967.

3. Becker, H. Communication processing for large data networks. Data
Processing Magazine 12, No. 11:51-55» 1970.

4. Newport, C. B. Applications and implications of mini-conpiters.
AFIPS Spring Joint Computer Conf. Proc. 36:691-695» 1970*

5. Strachey, C. Time sharing in large fast conpiters. In International
Conference on Information Processing Proceedings. Pp. 336-341.
Paris, UNESCO. I960.

6. Corbato, F. J., Merwin-Dagget, M. and Daley, R. C. An e:q)erimental
time-shared system. AFIPS Spring Joint Computer Conf. Proc.
21:335-344. 1962.

7. Corbato, F. J. and Vyssotsky, V. A. Introduction and overview of the
multics system. AFIPS Fall Joint Computer Conf, Proc, 27, Part 1:185-
196. 1965.

8. Ossanna, J. F,, Hikus, L. E. and Danten, S. D. Communications and
input/output switching in a multiplex computing system, AFIPS Fall
Joint Conçniter Conf. Proc. 27, Part 1:231-241. 1965»

9. Cohler, E. U. and Rubinstein, H. A bit-access computer in a communi­
cation system. AFIPS Fall Joint Computer Conf. Proc. 26:175-185»
1964.

10. Daley, E. A. and Scott, A= E. The IBM 7740 Communication Control
System. IEEE Convention Record 12, Part 5:216-224. 1964.

11. Dreacher, J. E. and Zito, C. A, The IBM 7741 - A communications-
oriented conçïuter. IEEE Convention Record 12, Part 5:207-215. 1964.

12. Byrns, P. D. Considerations in designing a congmter communications
system. Datamation 15, No. 10:78-83. Oct. 1969»

13» IEEE Computer Society Workshop on Conpiter Communication. Computer 4,
No. 2:31-36. Mar./Apr. 1971»

14. Spencer, H. W., Shepardson, A. D. and McGowan, L. M. Small conpxter
software. Computer Group News 3» No, 4:15-20. Aug. 1970.

www.manaraa.com

72

15. Earth, J. Using mini-computers in teleprocessing systems. Data Proc­
essing Magazine 12, No. 11:51-55» 1970.

16. Burner, H. B,, Million, R. P., Rechard, 0. W. and Sobolewski, J. S.
A programmable data concentrator for a large computing system. IEEE
Transactions on Coatputers C-18:IO3O-IO37. 19^9.

17. Arnold," 0. E. Automatic polling by remote multipleacars. Tele-commu-
nications 3» No. 6:17-19. Jime I969.

18. PilipowskyV R.J. and Scherer, E, H. Digital data transmission os­
teins of the future. IRE Transactions on Communication Systems C8-9:
88-96. 1961.

19. Licklider, J. C. R. Man-computer symbiosis. IRE Transactions on
Human Factors in Engineering HFE-1:4-11. I96O.

20. Lewin, M. H. An introduction to computer graphic terminals. Proceed­
ings of the IEEE 55:1544-1552. 1967.

21. l^yer, T, H. and Sutherland, I, E, On the design of display process­
ors. Communications of the ACM 11:410-414. 1968.

22. Foley, J. D. Evaluation of small computers and display controls for
conçjuter graphics. Computer Group News 3i No. 1:9-22. Jan./Peb.
1970.

23. Levy, S. Y., Linhardt, R. J., Millier, H. S. and Sidnam, R. D.
System utilization of large-scale integration. IEEE Transactions on
CoBçjuters 0-16:562-566. 1967.

24. Riceï R. Impact of arrays on digital systems. IEEE J. of Solid State
Circuits 80-2:148-155. 1967.

25. Smith," M. G., Notz, W. A. and Schischa, E. The questions of systems
ingilementation -with large-scale integration. IEEE Transactions on
Computers 0-18:690-694. I969.

26. Smith7 M. G. and Notz," W. A. Large scale integration from a user's
point of view. AFIPS Fall Joint Computer Conf. Proc. 31:87-94. 1967.

27. FethV G. 0. Systems design and hardware technology. Conpiter Group
News 3t No. 2:24w28, Mar./Apr. 1970.

28. Henle7 R. A, and Maley, G. A, How LSI is affecting logic design.
IEEE Convention Record 1971:276-277.

29. Eoczela^ L. J. and Wang, G. Y. The design of a highly parallel com­
puter organization. IEEE Transactions on Conçniters 0-18:520-529.
1969.

www.manaraa.com

73

30. Beelita, H. R., Levy, S. Y., Linhardt, R. J. and Millier, H. S.
System architecture for large scale integration. AFIPS Fall Joint
Conpiter Gonf. Proc, 31:185-200. 1967#

31. Rice," R. LSI and computer system architecture, Conçuter Design 9,
No. 12:57-63. Dec, 1970,

32. Atley7 E,,^ Ed. Can you build a system with off-the-shelf LSI. Elec­
tronic Design 18^ No. 5:46-51. Mar. 1, 1970.

33. Avizienis, A. and Tung, C. A universal arithmetic building element
(ABE) and design methods for arithmetic processors. IEEE Transactions
on Conçiuters C-19:733-745. 1970.

34. Raisanen, W. LSI memories change computer design. Electronic Design
16, No. 24;C5-C8. Nov. 21, I968.

35« Moore, G. E. Semiconductor RAMS - a status report. Computer 4,
No. 2:6-10. Mar./Apr. 1971.

36. Kautz, W. H. Cellular logic-in-memory arrays. IEEE Transactions on
Computers C-18:719-727. 1969.

37* Housed D. L. and Henzel, R. A. Semiconductor memories and mini­
computers. Computer No. 2:24-29. Mar,/Apr. 1971.

38. Petritz, R. L. Current status of large scale integration technology.
AFIPS Fall Joint Computer Conf. Proc. 31:65-86. 196?.

39. Vadasz7 L. L.,' ChuaV H. T. and Grove j A. S. Semiconductor random^
access memories. IEEE Spectrum 8,' No. 5:40-48. May 1971.

40. Zingg, R. J., Pohm, A. V., Haglund, R. A research recognition proc­
essor. National Electronics Conf. Proc. 26:104-109. 1970.

www.manaraa.com

74

ACKNOWLEDGMENTS

The author acknowledges the many hours of assistance and advice

supplied l^y Professor Arthur Pohm. Professor Roy Zingg contributed much

of his time to the terminal processor project and gave much helpful advice.

The author was influenced by the earlier work of Zingg, Pohm, and Haglund

(40) and, in particular, the indirect addressing scheme was derived from

their work. Special thanks are due R. Boswell, D. Dur bin and D. Holste

for constructing the processor. The author also acknowledges the help of

his wife, who contributed far more than the typing of this thesis»

The terminal processor project was supported by Energy Conversion

Devices, Inc. of Troy, Michigan.

www.manaraa.com

75

APPENDIX A; INSTRUCTION SET DESCRIPTION

The instructions described herein are those instructions •rfiich have

been implemented in the actual terminal processor. The bulk of the in­

structions are eight-bit instructions with a few l6-bit instructions.

There are three basic instruction types; Scratchpad Store and Temporary

File Register instructions. Skips and Junçs, and instructions which perform

some operation on a register or the contents of a register. The instruc­

tions will be described in the above listed order. When appropriate»mne­

monics are given for various instructions in addition to the hexadecimal

and binary codes.

READ SCRATCHPAD, SCRATCHPAD ADDRESS REGISTER, DESTINATION

1 1 SAR DEST.

Read the contents of the location specified by the selected Scratchpad

Address Register (SAR) into the destination given. The destination speci­

fications are given in Table 1. The SAR specifications are:

00 - SARO

01 - SARI

10 - SAR2

11 - SAR3

The file registers and the SAR*s can not be used as destinations for this

command.

www.manaraa.com

76

Table 1. Destination specifications

Binary Code Destination/Source

0000 NO1;3

0001 Register I

0010 Register II

0011 F Bus, Flag Register

0100 FAIR

0101 FAR

0110 FIR

OUI F Bus, Data Array

1000 SARO

1001 SARI

1010 SAR2

1011 SAR3

1100 S Register

1101 None

ino None

mi PSAR

www.manaraa.com

77

WRITE SCRATCHPAD, SAR SODRCE

1 0 SAR SOURCE

Write the contents of the specified source into the location given by

the specified Address Register. The SAR and Source specifications are as

in the Read command. The file registers and the SAR's can not be used for

data sources.

INCREMENT SAR ly n 50-57
IS, n

0 1 0 1 0 n SAR

Increment the specified SAR. If n = 0, the increment is 1, if n = 1,

the increment is 2.

DECREMENT SAR tyn 58 - 5?
DSÏ n

0 1 0 1 1 n SAR

This instruction is identical with IS except the selected SAR is de­

cremented.

www.manaraa.com

78

READ TEMPORARY FILE REGISTER, n
RTR, n

40 - 47

0 1 0 0 0 n

Place the contents of the specified tençwrary file register in the S

register. (0 < n^ 7)

WRITE TEMPORARY PILE REGISTER, n
WTR, n

48 - 4P

0 1 0 0 1 n

Write the contents of the S register into the specified teiqporary file

register. The TR specification is as in RTR.

A large number of the instructions are jumps and conditional skips.

Skips and jump relative instructions give flexible but short instructions.

JUMP RELATIVE POSITIVE, n
JRP, n

10 - 13

0 0 0 1 0 0 n

Increment the program storage address register (PSAR) by one, two,

three^^ or four according to the following specifications;

n mc

00 1

01 2

10 3

11 4

www.manaraa.com

79

Note that the amount of the increment does not necessarily correspond to

the number of instructions jumped. The PSAR is incremented by one at the

beginning of the instruction execution. For examplê in Figure 15 the next

instruction executed if n » +1 will be B •while for n = +4 the next instruc­

tion executed will be E.

JUMP RELATIVE NEGATIVE, n 14 - 1?
JRN, n

7 2 10

0 0 0 1 0 1 n

Decrement the PSAR by n lAere n is specified as in JRP. The PSAR is

decremented one more time than n to allow for the increment at the start of

execution. In Figure 15, for example, the next instruction executed for

JRN 1 will be Z lAiile for JRN 4 W will be the next instruction executed.

JUMP ABSOLUTE, LOCATION LA
JA; LOG

0 0 0 1 1 0 1 0

LOG

Replace the contents of the PSAR

following this instruction (LOG). If

in^lemented the page address would be

with the contents of the address

additional pages of program store are

stored following LOG.

www.manaraa.com

80

w

X

JR

B

E

Figure 15* Jump relative examples

www.manaraa.com

81

SUBROUTINE JUMP, LOCATION 18
SJ, LOG

0 0 0 1 1 0 0 0

LOG

Store the current contents of the PSAR +1 in the top of the push-down

stack then replace the contents of the PSAR with LOG. Since the PSAR is

incremented at the start of instruction execution, the address stored in the

push-down stack is PSAR +2.

The push-down stack is four deep; subroutines can be nested up to four

deep. If four is exceeded,an error will result. Note also that the in­

struction RPS utilizes the push-down stack during its execution. Thus, if

the maximum number of nested subroutines has been used, and if the last

subroutine uses RPS, an unrecoverable error will result. That is, there

must be at least one en^ty push-down location available to use RPS.

RETURN 19

Place the contents of the top of push-down stack in the PSAR and con­

tinue program execution with the instruction at that location.

www.manaraa.com

82

ZSIO TEST FLAG CHARACTER, SKIP n 20,21,23
ZTFC, n

7 2 1 0

0 0 1 0 0 0 n

Test the flag register specified by the FAR for zero. If the tested

flag register is equal to zero,take the next instruction in sequence. If

the tested flag register is not zero,increment the PSAR by the amount spe­

cified. The amount specifications is as follows: 00 skip 1, 01 skip 2,

11 skip 4. The skip specification 10 is illegal and will not be executed.

ZERO TEST FLAG HIT, SKIP n 24,25,2?
ZTPB, n

7 2 1 0

0 0 1 0 0 1 n

Test the bit of the flag register specified by the FAIR. If the bit

is equal to zero ,take the next instruction in sequence. If the bit is not

zero, increment the PSAR hgr n where n is specified as in ZTFC.

ZERO TEST DATA CHARACTER, SKIP n 28,29,2B
ZTDC, n

7 2 1 0

0 0 1 0 1 0 n

This instruction is the sane as ZTFC except the data register ad­

dressed by the FAIR is tested*

www.manaraa.com

83

ZERO TEST mTA BIT, SKIP n 2C,2D,2F
ZTDB, n

0 0 1 0 1 1 n

This instruction is the same as ZTFB except a single bit of the spec­

ified data register is tested.

ZERO TEST S REG, SKIP n 30,31,33
ZTSC, n

7 2 10

0 0 1 1 0 0 n

Test the contents of the S register for zero. If equal to zero take

the next instruction in sequence. If not zero skip as in ZTFC.

ZERO TEST S, BIT ZERO, SKIP n 3^,35,37
ZTSB, n

0 0 1 1 0 1 n

Test bit zero of the S register. If equal to zero take the next in­

struction, If not zero skip as in ZTFC,

SKIP IF ADDER OVERFLOW OF
SAV

If the add overflow flip-flop is equal to zero take the next instruc­

tion in sequence otherwise increment the PSAR by one.

www.manaraa.com

84

NO OPERATION IE
NOP

Increment the PSAR l?y one.

The rest of the instructions are operational instructions, i.e., they

operate on a register or upon the contents of a register. The first group

of instructions to be described are set and clear instructions.

SET FLAG 60
SF

Set the flag bit specified by the FAIR equal to one.

CLEAR FLAG 6l
CP

Set the flag bit specified by the FAIR equal to zero.

SET DATA 62
SD

Set the data register specified by the FAIR equal to one. If the data

register is more than one bit long all bits would be set equal to one.

CLEAR DATA 63
CD

Set the data register specified by the FA331 equal to zero. If the

data register is more than one bit long all bits would be set equal to

zero.

www.manaraa.com

85

START I/o CLOCK 64-
SIOC

Start the clock in the interface specified by the FAIR, The first

negative transition will occur at T/2 seconds after SIOC where T is the

clock period,

HIOC 65

Halt the clock in the interface specified ly the FAIR, The clock will

stop before the next negative transition if KEOC is executed within less

than T/2 seconds. If HIOC is executed after T/2 seconds the clock will run

until after the next positive transition.

SET S bit ZERO 70
SSO

Set bit zero of the S register equal to one.

CLEAR S bit ZERO 71
CSO

Set bit zero of the S register equal to zero»

ODD PARITY 08
OEAR

If the parity of RI is odd set s^ equal to one. If the parity of RI

is even set equal to zero.

www.manaraa.com

86

EVEN PARITY 09
EPAR

If the parity of RI is even set s^ equal to one, if odd, set equal

to zero.

SET CONSTANT; NUMBER OA
SO; N

0 0 0 0 1 0 1 0

N

Place the contents of the location following this instruction in RII.

CLEAR; REGISTER OD

0 0 0 1 0 1 1 0 1

REG.

Set the contents of the register specified equal to zero. The regis­

ter specifications are as in READ.

INCREMENT; AMDUNT, REGISTER 00
INC; #, REG

0 0 0 0 0 0 0 0

AMOUNT REG

Add. 'amount* (specified in the second character) to the contents of

the specified register. The following registers can not be incremented by

this instruction: SAR's, S REG, and FILE REGISTERS.

www.manaraa.com

87

Otherwise the register specification is as in Table 1,

DECREMENT J AMDDNT, REGISTER 01
DEC; #, REG

0 0 0 0 0 0 0 1

AMDUNT REG

Subtract 'amount' from the specified register. The register speci­

fication is as in INC.

ADD 02

Add the contents of RI to RII and place the result in the S register,

SDBBIACT 03
SDB

Subtract the contents of RU from RI and place the result in the S

register. Subtraction is two's con^lement.

SHIFT; END CONNECTIONS, REGISTER 05
SHIFT; EC, REG

0 0 0 0 0 1 0 1

SHIFT REG

Shift the specified register per the shift specification in Table 2.

The register specification is as in READ except the PAR, FIR, FAIR, SAR's,

FILE Registers, and FSÂR can not be shifted.

www.manaraa.com

88

Table 2. Shift Specifications

Bit 7 6 5 MEANING

0 0 0 Shift Tip*, shift in zero

0 0 1 Shift up, shift in one

0 1 0 Shift up, shift circular

0 1 1 Illegal

1 0 0 Shift dovn, shift in zero

1 0 1 Shift doim, shift in one

1 1 0 Shift down, shift circular

1 1 1 Illegal

* 'UP' is toward the most significant bit.

OR 06

Logically 'or' the contents of RI and RII and place the result in the

S register.

AND 07

Logically 'and' the contents of RI and RII and place the result in

the S register.

www.manaraa.com

89

COMPARE IMMEDIATE; CHARACTER OB
CEI; CHAR

0 0 0 0 1 0 1 1

CHAR

Compare the contents of RI with the character following this instruc­

tion. If the contents of RI are equal to CHAR set s^ equal to zero. If RI

does not equal CHAR, set s^ equal to one.

MOVE; SOURCE, EESTIKATION OC
MDVE; SOU, BEST

0 0 0 0 1 1 0 0

SOU DEST

Move the contents of SOU into DEST. The register specifications are

as in READ. The address store can not be used for both source and desti­

nation. If it is desired to M3VE from Address Register one to Address Reg­

ister twD^ for example, a two step move will be necessary. For example:

MDVE; SARO, RI

MDVE; RI, SARI.

If the F-bus is specified as a source or destination, the register used is

specified by the FAIR according to Table 1.

www.manaraa.com

90

READ PROGRAM STORE; REGISTER
RPS» REG

IB

0 0 0 1 1 0 1 1

REG

Use the contents of REG as an address in Program Store. Place the

contents of that address in the S register. The current contents of the

PSAR are stored in the push-down stack during execution of this instruc­

tion, The S register can not be used as base register. (See the SJ

instruction description.)

INCREMENT FA REGISTER; MAXIMDM 68
IPAR; MAX

0 1 1 0 1 0 0 0

MAX 0 0 0 0

Increment the FAR by one. If the contents of the FAR are zero after

the increment replace the contents of the FAR with MAX before proceeding.

The FIR is cleared during execution of this instruction.

INCREMENT FI REGISTER 69
IFIR

Increment the FIR by two. The increment is two to allow storage of

two characters at the location pointed to by the FAIR. For example:

FAIR CHAR 1

FAIR +1 CHAR 2

These two characters could be word and page addresses, for example.

www.manaraa.com

91

APPENDIX B. SAMPLE PROQIAMS

Two sample programs for polling techniques are described. The first

is a sequential polling loop in which each flag register (FR) is tested.

If any bit within the tested flag register is equal to one, further testing

is done to find the first nonzero bit. The poll continues with the next

flag register after completing the service routine. Note that one step of

the service routine must be the resetting of the flag bit idiich is being

serviced. The flow chart for the first program is given in Figure 16.

The symbolic program given in Table 3*

Table 3» Sequential poll

SYMBOLIC CODE COMMENTS

POLL: IPAR ; MAX

ZTFC, 1

ZTFB, 2

JRN, 3

IFIR

Inc. FAR, if zero replace with max

Test FR (FAR) for zero

Try again

Test flag bit (FAIR) for zero

Inc FIR

JRN 2 Try again

SJ; SERVICE ROUTINE Go to service routine

JA; POLL Start poll again

www.manaraa.com

92

Increment
FAR, Replace
If Zero

no

Increment
FIR

Service
Device (FAIR) 'Tlag

(FAIR)
yes

I

Figure 16. Sequential poll

www.manaraa.com

93

The sequential polling technique might be to slow for certain devices.

A second polling technique would be to poll a device, say device k, every

other time. In this manner the time between poUs on device k would be

limited to the maximum service time for two devices, A program for polling

in this manner is given in Table 4 and Figure 17» Locations Temp 1 and

Temp 2 are used to store the flag address of k and the flag address that

was last polled. The program assumes the FAIR holds the flag address of k

at the start while Ten^ 2 holds the flag address of the last polled device.

If a device requires service a status look-up would be performed, A

program for doing this is given in Table 5 and Figure 18» This program

assumes that the FAIR holds the number of the device that requires service

and the PS page zero location given by the FAIR holds the start of status

for that device. (See Figure 19) The first character of status is con­

figured as shown below*

2 4 10

If T " 1 the device is transmitting, if T - 0 and R • 1 the device is

receiving. If T • 0, R • 0, and the flag = 1 a clear to send signal has

been received from the data set.

www.manaraa.com

9^

Table 4. Polling examile

SYMBOLIC CODE

Start: ZTPB, 1

JRP 2

SJ; SERVICE (k)

MOVE; PAIR, S

WIR n

RTR m

MDVE; S FAIR

IPAR; MAX

2TFC, 2

JAî RESTORE

ZTPB, 2

IFIR

JRN 2

SJî SERVICE (PAIR)

RESTORE: IDVE; FAIR S]

WTR m j

RTR n 1

MOVE; S FAIR J
JA; START

COMMENTS

Test device k flag

Flag (k) " 0

Flag (k) - 1

Save k

Restore last flag address

Inc FAR

Test flag reg (PAR)

Flag reg - 0

Flag reg - 1

Inc flag bit

Try again

Service device (FAIR)

Save poll address

Restore k

Poll k

www.manaraa.com

95

no

Save content!
of FAm,
Start PoUinj
Loop .

yes no

no

Poll

Place k in
FAIR

Device (FAIR]
Service
Routine

Increment
Flag Index

Increment
Flag Address
Replace if

zero

Device k
Service
Routine

Figure 1?. Polling example

www.manaraa.com

96

Table 5* Status look-up

SÏHBOUC CODE COMMENTS

RPS; Fm

M)VE; S, HDRO

READ, MARO, S

ZTSO, 1

JRP Z

JAt niANS

SHIFT; , EA, S

ZTSO. 2

JA; GTS

JAi REC

Status address to S

Status address HARO

Status character to S

Transmit?

Go to receive test

Go to transmit

Shift to receive bit

Receive?

Go to clear to send

Go to receive

www.manaraa.com

97

Status
Look-up

MOVE 8 UARO

no
Transmit

yes

Shift
EA

yes
Receive

Figure 18. Status look-up

www.manaraa.com

98

FAIR

Program Store

Scratchpad

Status

Figure 19» Status look-up technique

	1971
	The structure and organization of communication processors
	Richard Elmer Zimmerman
	Recommended Citation

	tmp.1412711728.pdf.TsvJK

