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INTRODUCTION 

• Computer communications are defined to be those communications which 

are necessary for the flow of information between a host computer and its 

various terminals (1). In recent years, due to the availability of low 

cost data transmission techniques, wide spread conçjuter communications have 

become economically viable. As the technology for data transmission has 

developed computer communication networks have been developed. This has 

led to communication-based computer systems, i.e., systems that utilize 

some type of carrier facilities to transmit or receive data. 

The full computing power of a communication-based computer system 

would probably not be realizable without the development of time-shared 

computer systems. Time-sharing is defined to be the apparently simulta­

neous access to a computer system by a group of independent users (2). 

Time-sharing is feasible because of the immense speed differences between 

the human users and the computing system; each on-line user feels that the 

central machine is his alone. This feeling occurs as long as the response 

time, i.e., the time for the host machine to answer, is kept relatively 

small. The desire to keep response time small has led, in turn, to real­

time computer systems. Real-time systems are those in which some partic­

ular response time requirement must be met ty the system (2). 

The juxtaposition of real-time, time-shared computer systems for use 

on-line using communication networks has led to a specialized processor 

known as a communication processor. These processors, usually small 

computers known as mini-computers, are responsible for supervising the 

communication networks. Smaller versions of these machines are, or can be, 

used at a remote site as intelligent terminals or as line concentrators. 
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This need for communication processors has arisen from two basic 

reasons. One; most large systems have in the past been designed for 

batch oriented processing» Thus the handling of many individual ter­

minals could greatly overload the system. With the advent of machines 

oriented toward a multi-user environment this problem has not been totally 

alleviated. The demands upon a terminal oriented system are severe; more 

time can be spent receiving data than processing it (3). The heavy load 

comes about because each terminal generates many interrupts for each line 

of data transmitted. The communication processor can handle those inter­

rupts and present data to the host machine in a clean format. This greatly 

reduces the load on the host machine. 

In addition, more tasks can be assigned to a communication processor. 

These tasks might include such things as code conversion, editing and error 

detection/correction. This, in turn, reduces the host machine's work load. 

As the need for communication processors has been increasing a second, 

parallel, development has been taking place. This is the development of 

large scale integrated circuit arrays. While some doubt exists as to 

exactly what constitutes large scale integration (LSI),a general defini­

tion is this: Arrays having a gate complexity greater than one hundred 

gates are referred to as LSI. For arrays with a conqplexity from ten to 

one hundred gates the term medium scale integration (MSI) has been adopted. 

Small scale integration refers to arrays with complexities of less than 

ten gates. 

LSI has had, and will continue to have, a great iiqpact in two areas 

that are of interest to a system architect. The first area is that of 

available functions where a function is defined to be some operation, e.g.. 



www.manaraa.com

3 

addition. As it has become apparent that the architect can expect to 

accomplish more on a single chip of silicon a problem as to what functions 

were necessary has arisen. This problem has led to a great deal of 

research with regard to system architectures that could more fully utilize 

LSI. There have been two primary efforts in this area. One has been to 

maximize the gate to pin ratio, i.e., minimize the interconnections to the 

outside world. This approach recognizes that logic, in a large array, can 

be cheaper than interconnections a significant amount. The second 

approach, which does not exclude the first, has been to minimize the number 

of unique parts in the system. This solution comes about because develop­

ment costs are clbsely tied to the number of parts in the system; fewer 

parts mean, in general, lower costs. 

A second area which has been affected by LSI is that of storage. 

Heretofore, magnetic storage devices have been the dominant storage tech-

-. nology. Magnetic storage devices have inherently complex electronic sub­

systems associated with the storage system. The need to share this complex 

electronic subsystem has led to a large storage module size* This has, in 

turn, yielded great economical benefits. Large scale integrated circuit 

storage elements, while still requiring some shared logic, have much of the 

decoding logic and all of the sense amplifiers and word drivers on a single 

chip of silicon. Thus, while larger semiconductor memories could and would 

be constructed, very small semiconductor memories can be distributed in a 

processor. This would not be practical with magnetic stores. 

LSI will have a great impact upon the conpiter systems of the future. 

Because of this effect it behooves a system architect to fully study LSI 
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techniques. With current semiconductor techniques MSI is much easier to 

produce than LSI. This research will propose a MSI logic family. This 

logic family will be a standard minimal number of parts type family rather 

than a custom set of chips. Unfortunately, because of limited facilities 

no attempt was made to actually fabricate this logic family. 

This choice of MSI logic will be shown to have great ramifications 

upon the organization of a communication processor. The rest of this 

research will be a inquiry into efficient organizations and structures for 

a family of MSI communications processors which are intended solely for use 

in communication-based conpiting systems. Finally a small communication 

processor will be discussed. This small processor will utilize the ideas 

discussed within this paper. The results of evaluating this processor will 

also be discussed» 
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REVIEW OF LITERATURE 

Coiranunication Processors 

Mini-computers are small, low priced, general purpose computers that 

can be used as dedicated systems» One of the primary uses of mini-compute, 

ers has been as dedicated communication processors. These mini-coiqputers 

have been programmed to reduce host machine overhead, Newport (4) points 

out that, in a large airlines reservation system or time-shared interactive 

system, it is very easy to swamp the host machine to the point that little 

basic computation can be done. It is precisely this large overhead that 

the communication-oriented mini-computer is intended to reduce. 

The need for communication processors was recognized very early in the 

history of interactive computing systems. Strachey (5), however, first 

proposed time-sharing to reduce the complexity of terminals. Strachey felt 

that the large fast main machine could be used to control peripherals and 

to provide buffer storage for those peripherals. The impetus was, of 

course, economical. Buffer storage and control hardware were very expen­

sive in 1959* 

An early (1962) time-shared system described by Corbato et al, (6), 

was based on an IBM 709O computer. As a part of the 7090 a direct data 

connection port ̂ s used to attach a "real-time equipment buffer and con­

trol rack" for controlling terminal devices. Thus, three years after 

Strachey's initial proposal, the buffer has been taken back out of the 

main machine. The idea of sharing this buffer storage and control was 

retained however. The real-time equipment was hardwired and any flexi­

bility was contained in the system programs. 
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In 1965 Corbato and Vyssotsky (7) discussed the Multics System of MIT. 

The Multics System was based on a GE 645 Computing System. The I&iltics 

System utilized a "Generalized Input/Output Controller" for supervising the 

comraonication network of Multics. Ossanna et alo (8) described the Gener­

alized Input/Output Controller. The GIOC was an nonprogrammable interface 

which was much more sophisticated than the earlier MIT buffer and control 

mentioned above. The flexibility of the GIOC was still the primary respon­

sibility of the system software, however. The GIOC did perform such tasks 

as word assembly and disassembly, parity checking and generation, sequenc­

ing and control, status updating, and priority allocation in hardware. 

Cohler and Rubinstein (9) suggested using a general purpose processor 

in a message switching system in 1964. The reasoning was that the wide 

varity of requirements in a message switching system dictated the use of a 

programmable message processor. To achieve high reliability, a multi­

processor scheme was implemented» This is often the case in message 

switching systems where loss of data is catastrophic failure, Cohler and 

Rubinstein suggested time-sharing the message switching processors for 

economical reasons. 

Commercial specialized communication processors appeared at a rela­

tively early date. In 1964 Daley, Scott, Drescher and Zito described the 

IBM 7740 and 7741 (10,11). This system was a programmable front-end 

processor specialized for the communications network. 

To aid in the input/output problem, such as that mentioned by 

Strachey, computers have utilized a multiplexer type l/O scheme. The third 

generation machines such as the IBM ̂ 60, the Control Data 66OO and the 

Burroughs B5500 system all utilized some type of intelligent multiplexers 



www.manaraa.com

7 

for purposes of controlling local peripherals. These intelligent multi­

plexers were capable of transferring data to or from main memory without 

central processor interference by utilizing a storage cycle stealing 

ability. This increased greatly the number and types of peripherals the 

central computer could control. These third generation machines were 

still, for the most part, batch processing oriented. The real impact of 

interactive computing was to take place later. 

The present "communication processor" is probably a general purpose 

mini-computer adapted to handle communication processing by Virtue of 

special hardware and software packages. Examples of this application of 

mini-computers abound (1,3,4,12,13,14,15). Probably the best recent 

example that is well documented in the literature is that of Burner et al • 

(16) of Washington State University. In that application an Interdata 

Model 3 mini-computer was used as a programmable Data Concentrator for a 

IBIf /36O-67. The Interdata 3 was supplied with a special instruction to 

aid in mulitplexing and concentration. In addition, Burner et al. pro­

posed a dual processor system which would use a Interdata Model 3 and a 

Interdata Model 4. The slower Model 3 would be used to multiplex 64 slow 

speed lines (*̂ 110 baud) while the Model 4 would handle the 36O interface, 

the Model 3» and four lines with data rates on the order of 2400 baud» 

The basic reason for this dual processor system -Has to distribute the load 

and to have enon^ processing power left to do such sophisticated tasks as 

syntax checking. The Models 3 and 4 would work out of a shared core mssso-

ry. Thus the communication processor has not only been removed from the 

host machine bat it has been increased by a factor of two. 
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As the need for programmable communication processors has become 

apparent, so has a need and desire for more economical communications. 

It is possible to reduce communication cost by two methods; multiplexing 

and concentration. Multiplexing is the assignment of a channel's capacity 

on some, fixed, predetermined basis. Channel capacity is assigned to a 

terminal, for example, even if that terminal is not presently in use. 

Concentration is similar to multiplexing except that channel capacity is 

assigned on a demand basis; only those terminals •Kftiich desire service are 

assigned channel capacity. 

The multiplexers available are generally hardwired units that are 

intended solely for use as multiplexers. The use of these devices has been 

strictly for the purpose of increasing communication efficiencies. There 

has been, however, some effort at supplying more intelligent multiplexers 

which do more than simple multiplexing. The IBM 2905, which was described 

by Arnold (17), is an example. This idea was first proposed by Filipowsky 

and Scherer in 1961 (18). 

The need for sophisticated terminals has ê qpanded as interactive 

computing has becoms feasil̂ e. While the most common terminal is still the 

teletypewriter, the full graphical display terminal is becoming more and 

more commonplace. Licklider (19) first described the symbiosis, i.e., the 

union, possible between man and machine. Lewin (20) summarized the tech­

nology requirements for graphic terminals. Ifyer and Sutherland (21) 

described the general requirements for a display processor, i.e., the part 

of a display that is responsible for the control sequencing. 

Mini-computers have been used as dedicated display processors (20,22). 

This use of mini-computers is especially desirable when the graphics terrai-
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nal is located at a site which is remote from the host machine. This has 

led, in turn, to a sharing of the display processor by several displays 

(22). Thus it can be seen that time-sharing has an much expanded meaning 

over Strachey's original idea. 

LSI and LSI Architectures 

LSI proponents have long recognized two primary obstacles in the path 

to full utilization of LSI. The first problem is that present day computer 

structures are typified by highly irregular control structures. These 

irregular control structures have come about because system designers 

have, in the past, been very concerned about the sharing of logic func­

tions. Thus computers have been partitioned by function. Even before the 

advent of LSI, however, it had become apparent that interconnections were 

contributing a significant portion of the cost of systems. In addition, 

LSI packaging techniques have limited the number of interconnections to a 

chip. This has led to a need for minimal interconnections. 

Levy et al. (23) point out that conventional machines have achieved 

gate-to-pin ratios on the order of ,85 to 1. Clearly some new approach 

must be used if arrays having complexities on the order of 1000 gates are 

to be built. Rice (24) suggests that logic is cheaper than interconnec­

tions. 

The second major problem is that of a set of minimum number of parts. 

There must be some small set of LSI chips which will allow the system 

designer to conl'igure his own system (25,26,27). The absolute minimum 

would be one chip. The computer-on-a-chip does not seem very practical 

presently. The computer-on-a-chip would be viable only in those cases 

where large production volumes are anticipated» The present day "computer-
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on-a-chip"* tends to "be relatively inflexible -with-regard to organization 

and structure. 

Henle and Maley (28) identify four approaches to LSI. These ap­

proaches are the custom chip, the master-slice approach, the array chip and 

the functional unit. The custom chip is designed much as a printed circuit 

board. The logic diagram is transformed into a custom gate configuration; 

gate utilization is 100̂ . 

In the master-slice approach, a chip is manufactured with some fixed 

set of gates. These gates are not interconnected however, i.e., the 

second level metalization is not specified. VJhen the design is completed 

the second level metalization is applied; this determines the logic func­

tion of a chip. The master-slice approach leads to lower levels of inte­

gration than the custom chip (25). In addition, the utilization of gates 

is almost always less than lOOjS. 

The array chip is defined by Henly and Maley (28) as a read-only 

memory« In this approach the logic designer specifies a truth table. 

The ROM approach is probably one of the cheapest approaches and is intrin­

sically very regular. 

A more common definition of the array approach is that of Koczela and 

Wang (29). In this approach a machine is constructed using an array of 

many small processors. In this manner the cost of development for a chip 

can be amortized by using many identical chips in a system. The common 

chip resembles a mini-computer. 

The functional unit is a standard circuit that performs some function 

such as, for exançle, arithmetic. The standard MSI functions available 

currently are exançjles of this approach. 
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Architectural approaches to effective utilization of LSI are varied. 

Beelitz et al, (30) proposed and constructed a functionally partitioned 

machine known as LIMC. This machine used fimctional units with local 

control; the machine was inicroprogramed. While the control sector of 

each functional unit was identical the actual functional unit varied 

depending upon the tasks to he performed. This approach greatly increased 

the gate to pin ratio. The ratio improved hy a factor of 2:1 to ?:! over 

a standard approach depending upon the level of integration, The improve­

ment of 7:1 was predicted for an integration level on the order of 1000 

gates. 

Rice (31) used an approach which can best be described as a bit-sliced 

universal register approach. In Rice's technique a "register" that is ca­

pable of many basic operations is programmed to perform standard opera­

tions, This technique has been attributed to Noyce by Atley (32), 

Avizienis and Tung (33) &nd Henle and Maley (28). In Rice's approach the 

bit width of the universal element is kept small so that a l6-pin dual-in­

line package can be used. This results in a bit width of four bits or 

less. The universal register approach yields a very low number of parts, 

Noyce (32) states three different parts are enough; the universal register, 

a random access read-write store, and a read-only store. This coincides 

with Rice's predictions (31) except that Rice alludes to "a few discrete 

integrated circuits". 

An area lAiich has received much attention over the past two years is 

that of semiconductor or LSI memories. The LSI memory is said to present 

a challenge to the predominant main frame storage technology; the core 
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memory. There are several architectual ramifications inherent in the use 

of LSI memories. 

One of the most important differences betï̂ een magnetic memories and 

semiconductor memories is that the size of an economical semiconductor 

module is an order of magnitude less than that of a magnetic memory (31, 

34,35). It is now possible for a system designer to distribute small 

memories throughout the system. This concept can lead to systems which are 

radical departures from conventional machines. 

Raisanen (34) discusses the advantages of distributed memory. This 

leads directly to logic-in-memory approaches such as that described by 

Kautz (36). Approaches such as associative processors could also become 

more feasible economically in the next decade because of semiconductor 

memories (34). 

House and Henzel (37) have discussed the effect of LSI memories upon 

mini-computer designs, A key point of their argument is that LSI memory 

speeds are increasing much faster than are logic speeds. This, once again, 

forces a system designer to reconsider conventional machine designs. As 

memory speeds increase,more logic will have to be devoted to keeping the 

memory busy. House and Henzel feel that this will result in mini-computers 

with the same amount of logic but fewer architectural features than pre­

sently are available. This means that a more regular control structure 

will have to be found. 

In 1967 Petritz (38) made some predictions based upon previous experi­

ence. His predictions have been proven essentially correct. Silicon chip 

sizes on the order of 200 square mils have been achieved. Memory cell 

sizes on the order of 20 square mils are now possible (39) for bipolar 
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devicoti. Gate areas are on the order of 150 square mils for current mode 

logic or transistor-transistor logic. This means that complexities on the 

order of 200 gates per chip can be achieved with present day bipolar tech­

nology. Memory chip sizes for random access read-write memories seem to be 

limited to the order of 256 bits or so at present. These facts will be 

important in later considerations. 
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COMMUNICATION PROCESSOR ORGANIZATIONS 

Computer organization, i.e., the data flow and the control logic, is 

affected by several factors. The task to be performed by the processor 

should influence the organization of a machine heavily. Because logic and 

fabrication are relatively inexpensive, it is possible to design and build 

economical special purpose processors to perform certain tasks. The stand­

ard "general purpose" arithmetic processor organization may not be a viable 

answer for a processor which serves a special purpose. 

In addition to the tasks to be performed» physical realities play an 

important role in determing a system's organization. The packaging tech­

nique and logic family used can greatly affect the final product. So as 

to approach the problem of communication processing more fully, a medium 

scale integrated circuit family will be proposed. This logic family influ­

ences the organization of a processor,but does not limit a designer's flex­

ibility. After describing the logic family the considerations which are 

important in communication processor organization will be discussed. A 

following section will discuss a tlSI communication processor organization 

which utilizes the ideas set forth in this section. 

A MSI Logic Family 

The basic considerations and goals in designing a I'fil logic family are 

discussed in this section along with pin count data and silicon area re­

quirements. The detailed descriptions are down to the gate level, in most 

cases, but do not go further, i.e., the actual transistor configuration is 

not described. Basic area calculations are included to show that this 

logic family could be built l^y current or near future state-of-the-art. 
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High speed is desirable in a logic family to achieve high system per­

formance while lower power consumption is necessary to minimize heating and 

power supply problems. Current, well developed technologies that meet the 

requirements of speed and power are current mode logic and complementary 

transistor logic. Both technologies, in addition, are capable of wired-or 

operation. This capability aids in the construction of a bus-oriented 

system. And/nand notation has been adopted for the standard gate of this 

family. This would necessitate the use of negative logic for most current 

mode logic families. 

For purposes of area calculations, the following assumptions will be 

2 2 
used. Memory cell sizes will be 20 mil for lower speed cells and 30 mil 

for higher speed cells. Gates will be assumed to have an area on the order 

2 
of 150 mil irregardless of the number of inputs. This, on the average, 

should give an approximate area required for the particular circuit, A 

2 
chip size of 40,000 rail will be adhered to in all cases. This establishes 

an upper limit on the order of 200 gates per chip for logic devices allow­

ing 25̂  for chip interconnect pads. This is adequate and within the cur­

rent state-of-the-art. 

Medium Scale Integration (MSI) presents many of the same problems that 

are encountered in the design of processing systems utilizing large scale 

integration. These primary problems, which the system architect must fully 

consider, are minimum interconnections and a minimal number of unique 

parts. The solutions for these problems are many. All solutions, however, 

are in accord on one point; that the control logic in a processing system 

is highly irregular and it is this irregularity that is directly responsi­

ble for the high number of interconnections in conventional systems. 
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System designers have, in the past, attempted to minimize the amount of 

unique control logic by using centralized control schemes. The new ap­

proach to control expanded here could best be described as a distributed 

control. However, simply distributing the control logic would not of it­

self make a machine's control logic more regular. Thus a unified control 

scheme must be proposed that does reduce the amount of control logic, 

A key to the effective use of distributed control is how instruction 

and timing information are to be distributed to the functional units of a 

machine. One method of distributing this information is the bus-oriented 

system. In a bus-oriented system all communication between functional 

units takes place on a single bus structure. This bus, while a single 

physical bus, can be subdivided into several logical busses each with a 

particular function to perform. This technique provides minimal inter­

connections. There are other advantages to using a bus-oriented system. 

One, the timing can be asynchronous between functional units. This means 

that, if a different hardware scheme for a functional unit is to be imple­

mented, a simple replacement of the old hardware will suffice. Since 

instruction decoding and timing are local to a functional unit the rest of 

the machine is unaware of the change ; the new functional unit performs the 

same tasks at, perhaps, a different rate, A second advantage of bus-

oriented systems is that new functions can be added to the system with 

minimal effort. 

An alternate method of reducing the amount of irregular control logic 

is microprogramming. In microprogramming the control sequence of an 

instruction execution is programmed. Thus the control sequence can be 

modified by changing the microprogram. Microinstructions are more basic 
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than typical machine instructions and deal with actual gating and similar 

signals» This reduces the amount of unique control logic needed in the 

machine. Usually microprogram storage is a read-only store (ROS) because 

the microprogram does not need to modify itself. 

The key points of the above discussion are: 

1, A unified control scheme is necessary to reduce the amount 

of irregular control logic; 

2. Bus-oriented systems reduce the number of interconnections, 

increase the flexibility of a system, and are capable of 

modularity; 

3* Microprogramming reduces the amount of irregular control 

logic and increases the flexibility of a system usually at 

the expense of performance. 

The proposed MSI logic family resembles emitter-coupled logic families both 

in speed and functions. Because of the need for a bus-oriented system de­

vices capable of wired-or operation have been provided. 

A prime consideration in the proposed logic family is the control 

technique to be used. The method of control desired here must: 

1. Reduce the amount of irregular logic, i.e., the intercon­

nections ; 

2. Result in a minimal number of unique parts; 

3. Be adaptable; 

4. Be capable of asynchronous operation on the functional unit 

level; 

5. Be capable of being integrated on at least a medium scale 

level; 
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6. Provide functional unit timing» 

These requirements result in some constraints upon the design of a control 

unit. One important constraint is that, if operation is to be asynchronous 

between functional units, some mode of signaling task completion is needed. 

If several functional units take part in an instruction execution»a simple 

"completed task" signal will not suffice. Secondly, if different instruc­

tions use the functional units in different sequences, then some mode of 

changing sequences must be provided. Note that this discussion assumes 

that one functional unit does not execute one instruction. This constraint 

raises the possibility of parallel operation of two or more functional 

units. This parallel operation mode should not be excluded by the control 

technique and will, in fact, be desirable. 

A hypothetical processor is depicted in Figure 1. A control technique 

which meets the above listed requirements has been implemented» The basis 

for this control scheme is a control chip, a system clock, and a functional 

completion bus. Each functional unit constantly monitors the functional 

completion bus. When a particular functional completion code is found,that 

functional unit begins operation, Conçiletion codes can be assigned to vary 

the sequence of operation. Since the bus is capable of wired-or operation, 

parallel functional unit operation can be achieved by requiring a code to 

be furnished in part by one unit and the rest by another. Functional unit 

timing is derived from the system clock while instruction distribution is 

via an instruction bus. The number of functional units is not limited in 

concept; the maximum number of l6 has been chosen in this particular imple­

mentation. If necessary, control chips can be cascaded to provide addi­

tional functional unit timing signals. 
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The logic for the control chip is shown in Figure 2. This chip con­

sists of a three-bit up-counter, a one-out-of-eight decoder, and a four-bit 

latch with comparison circuitry. The up-counter and the one-out-of-eight 

decoder are used to generate local timing signals. When proper conditions 

exist,the counter is enabled and begins counting at a rate determined by 

the system clock. The various states are decoded and generate eight timing 

signals which last for one, and only one, clock period. "When counter state 

m. is detected,the clock line to the counter is disabled and the counter 

is reset. If more than eight local timing signals are desired the chips 

could easily be cascaded to generate timing signals in increments of eight. 

The disable line is also brought out so that the timing signal could be 

disabled by external logic. 

The four-bit latch is used to hold a functional completion code. 

•When the contents of the functional completion bus match the contents of 

the latch,a match signal is generated. This signal can be used to enable 

the clock and is also available externally. The latch is loaded from 

the functional conçletion bus at the start of an instruction. 

The 16 completion codes should be adequate for most purposes. Should 

additional completion codes be required,two control chips and a single and 

gate would expand the number of unique completion codes to 256. Performing 

parallel operations reduces the number of available con̂ letion codes. 

The control chip has a complexity on the order of 70 gates. This is 

well under the maximum permissable number. The number of pins, i.e,, 

external connections, is 19 including the power supply connections. 

Bipolar LSI stores have many characteristics that make them desirable 

for use in communication processors. Semiconductor stores have a small 
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economical module size that make it possible to have different types of 

storage provided. A second desirable feature of bipolar semiconductor 

stores is the very high performance capability; access times less than 

100 ns are commonplace with LSI stores. A third advantage of LSI stores 

is that the mechanical assembly teclmology is identical to the assembly 

technology for logic. 

One possible disadvantage of bipolar semiconductor stores is their 

volatility. This means that, if automatic system start-up is to be pro­

vided, some attention must be paid to the initial state of the LSI stores. 

Cne solution to this problem will be discussed later. These LSI store 

characteristics led to machine organizations which are different from con­

ventional organizations. 

To take full advantage of the characteristics of semiconductor stores, 

two basic memory building blocks have been included in the logic family. 

The first is a small, very high speed device. Access time is assumed to be 

less than 35 nanoseconds. The chip is organized as an eight character 

(character equals eight bits) array. The chip is fully decoded, and capa­

ble of wired-or operation. The second store chip is a larger, and some­

what slower device; access time is 75 ns with a cycle time of 100 ns to 

125 ns. The 512-bit chip is organized as 512-one bit words. Addresses 

are fully decoded and wired-or operation is possible. Both storage build­

ing blocks will fit in a dual-in-line 24-pin package, however, the larger 

chip is packaged in a l6-pin package to conserve printed circuit 'real 

estate', 

Figure 3 depicts the small, high-speed memory package. The area 

requirements are: 
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2000 mil̂  - storage array 

4000 - decoding and word drive 

2 2000 mil - sensing and output logic. 

This 8000 mila^ is well within the 40,000 mil^ allowed. The speed of the 

•«mwn memory is assumed to be in the order of 35 ns« This should be a-

chieved easily using Schottky barrier bipolar technology» The pin connec­

tions are shown in Figure 3* 

The eight character configuration of the small memory chip does not 

minimize chip interconnections. The advantages of having a complete char­

acter in a single package makes the trade off worthidiile. To minimize chip 

interconnections, the input-output pins are shared; this increases the com­

plexity of the chip slightly. 

The large storage element is depicted in Figure 4. Assuming a cell 

2 
size of 20 mil , the 512-bit array area will be on the order of 

2 10,000 mil . The remaining area is sufficient for address decoding and 

sensing. The next step could be an array of 1024 bits. This size array 

would take an area of 20,000 mil which allows some 50̂  of the chip for 

interconnections, sensing, and address decoding. The 1024-bit chip should 

be achieved without great difficulty; the 512-bit size should be easily 

implemented using today's technology. 

For arithmetical and logical operations, an arithmetic/logic unit (ALU) 

has been provided. This unit is similar to an universal register. The 

ALU is one character or eight bits wide and is capable of performing the 

following operations on two eight-bit operands: add, subtract, exclusive-

or, equivalence, 'and', and 'or'. The ALU is easily controlled and gives 
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the designer a great deal of flexibility. This approach also results in a 

minimum number of unique parts while not making any one chip extremely com­

plex. 

One approach in 'universal' register designs has been to include 

shifting capability within the register. This approach has not been used 

here because of the desire to stay within a 24-pin limit and under the 200 

gate limit. A completely general one-character shifter can be constructed 

using two bus switches and an and/nand package. To include this shifting 

capability within the ALU would increase the complexity of the chip unnec­

essarily. 

The output of the ALU is under control of the fourth control pin and 

can be statically or dynamically connected to a bus. The type of connec­

tion is determined by the instruction requirements. This mode of operation 

gives another dimension of flexibility to the arithmetic/logic unit. 

The arithmetic/logic unit block diagram is shown in Figure 5» The 

basic mode of operation is to load the two internal registers with the 

operands and then perform the desired operation, or operations, upon the 

contents of the registers. The six basic operations are sufficient to 

perform many processing tasks while not greatly increasing the complexity 

of the chip. The total gate count for the ALU is 180 gates which is near 

the maximum allowable. The pin connections are depicted in Figure 5* 

A bus switch has been included in this logic family to facilitate a 

bus-oriented system. The bus switch is depicted in Figure 6, The capa­

bility to connect the complement of a eight-bit character has been included 

to aid in performing operations which utilize complements. This capability 

has also been included to limit the number of output pins from a latch 
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since the complements can be obtained using a bus switch. As pointed out 

above,the bus switch can also be used to generate logic functions, e.g., 

using it as for the basis of a shifter. The gate count of the bus switch 

is 24 gates while 18 pins are used. This is a very low level of complex­

ity. 

The one character latch is shown in Figure 7. This latch has been 

included in the logic family to allow for those functions where one char­

acter of storage is desired. A typical application might be an actual 

memory address register. The incrementing-decrementing capability could 

be achieved by using an ALU chip. The latch has a complexity of 24 gates 

and 19 pins. 

For generating arbitrary logic functions and for additional storage 

and sequential logic functions, three additional elements have been included 

in the family. These elements are an and/nand element, with the number of 

inputs variable from one to eight, and a JK toggle flip-flop element for 

those instances where a local flip-flop is desired. These elements are 

only small scale integration; they are very desirable, however, because of 

the flexibility that comes from having these units available. Because of 

the SSI level, however, it would be desirable to adopt a master slice 

approach to these elements. In this approach some number of standard gates 

could be fabricated on the chip. The second level raetalization could de­

termine the gate configurations. This approach would greatly increase the 

integration level while not reducing the system designer's options. 

The two small scale integrated circuits are shown in Figure 8, As 

discussed above, the and/nand circuits would be constructed using the 

master slice approach. The number of gates included upon a single chip 
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should be on the order of 30. This is enough to generate many logic 

functions while low enough so as to not result in high inefficiencies in 

gate usage on the chip. 

The drive capability and speed of this logic family has not been 

specified. Typically, current-mode logic is capable of very high-speed 

operation in some circuit configurations, e.g., sub nanosecond. To keep 

poller dissipation levels reasonable,the speed of this family should be in 

the two to three nanosecond range. This should be readily achievable with 

today's technology. 

The fan-out properties of current-mode logic vary from family to 

family. While actual characteristics could not be determined without 

performing a detailed circuit design, fan outs from eight to 15 should be 

reasonable for this family. 

To more fully exploit the power of microprogramming, and of this logic 

family, an electrically alterable read-only memory should be used for 

microprogram storage. The requirement of writability, coupled with a 

requirement for nonvolatile operation, effectively eliminates bipolar stor­

age devices from consideration for use as microprogram storage. While 

plated-wire memories have many of the characteristics called for by this 

application,the module size necessary for economical operation of a plated 

wire memory is larger than desired in this case. The so called program­

mable read-only memories limit the firmware designer to one attempt per 

device; there is no method to reprogram the PROM. Current I#OS technology 

also has many of the desired characteristics; the performance is less than 

that desired, however, A microprogram store which does meet the above 
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requirements is available and has "been used in a test processor. This 

memory device is described later. 

There are nine elements in this MSI family. This represents a small 

number of unique parts. The design of a system -which would use this hypo­

thetical family is discussed in a following section. 

Organizational Considerations 

The communication processor's primary function is input/output (l/O). 

The basic computational tasks for a communication processor are straight 

forward and will be discussed later. The l/O technique is of primary 

importance when considering communication processor organizations. 

The i/o techniques used in a communication processor should have the 

goals of minimum interface hardware and maximum flexibility with respect to 

the number and type of terminals. Additionally, the communication process­

or is intended to remove some of the burden of supervising the communica­

tion network from the host machine. This has, in the past, been accom­

plished in part by increasing the complexity of the terminals, i.e., making 

the terminals more intelligent. This conflicts with the desire of users to 

have inexpensive terminals. The addition of a communication processor does 

not remove the conflict between terminals and central machine by itself, 

however. In effect, the communication processor now is a compromise be­

tween the terminal-oriented tasks and the host machine-oriented tasks. 

Most communication processors have, to date, resolved this conflict by 

using a general purpose mini-computer as a communication processor and 

building elaborate terminal device interfaces. These interfaces are in­

flexible, usually limiting the user to some number of more or less 
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identical terminals, and expensive because, for example, all character 

assembly/disassembly and checking is done by the interface. 

To arrive at a more satisfactory solution to the problem a two level 

processing capability could be used. The first level would be that level 

which is primarily concerned with the host machine and the larger compu­

tational tasks. The first level corresponds to a 'front-end' processor. 

The second-level processors would be more terminal-oriented than the first. 

This division of tasks could resolve the conflict between inexpensive 

terminals and host machine overhead while having many additional benefits, 

A primary benefit of the dual communication processor would be that 

the second level processor could be used to provide concentration of slow 

terminals from remote sites. The second level processor could be con­

structed GO as to greatly reduce the amount of interface hardware needed. 

This would result in a greater flexibility than is possible using a one 

level system. 

If unique machines were to be developed and constructed for the first 

and second levels this solution could be expensive. The gain in perform­

ance might not offset the increased price. To make this two-level communi­

cation processor idea an economically viable one the first- and second-

level processors must closely resemble one another in organization and 

structure. This means that the decision to microprogram and to have a bus-

oriented system will facilitate this multiprocessor technique. The basic 

machine structure will be identical; additional functions could be includ­

ed in the first-level processor only as needed. In fact, the second-level 

processor would be a stripped down version of the first-level processor. 
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I/O in coimmnication processing is different from conventional comput­

er I /O in that, in conventional computing, the conçruter initiates all L/O. 

That is, the central machine reads or writes data to from or to some device 

when it desires to do so. In communication processing the terminal devices 

initiates l/o in some random manner to the communication processor. This 

necessitates a somewhat different approach to L/O. 

There are two basic techniques for communication processor l/O; 

polling and contention. In polling, each terminal device is tested to find 

out if that device presently needs service. This testing proceeds under 

the control of the communication processor. In this manner,some control of 

over terminal devices is established. In contention, terminal devices 

interrupt the communication processor when service is needed; terminals 

contend for processor time. Because it is desirable to mix terminal types 

and hence, transmission speeds, simple polling is usually less efficient 

than contention. This is because the polling rate, i.e., how often a ter­

minal is tested, mist be at least as fast as the fastest terminal's data 

rate. Thus a slow terminal would be tested many times over what would 

actually be necessary. In a contention system, however, the efficiency is 

high because terminals ask for service only when service is needed. Con­

tention tends to be more expensive in terms of hardware than polling. 

The basic considerations when using a polling scheme are that the 

testing time and the time around the polling loop should be kept as short 

as possible. In addition, a polling scheme should be as flexible as possi­

ble with respect to the number of terminals polled. The time around the 

loop is a function of the amount of service each device needs. This 
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directly affects the structure of a communication processor and, indirect­

ly, the organization. 

The basic computational tasks of a communication processor are 

assembly/dissassembly of characters, queueing of data and control informa­

tion, formatting of data, character searching, error detection and correc­

tion, code conversion, and real-time housekeeping. Note that maintenance 

of pointers, table look-up procedures, and character manipulation are the 

primary tasks. Arithmetic capability beyond that needed to perform those 

tasks is not necessary. 

The division of tasks between the first and second levels has been 

discussed earlier. Those tasks which are terminal-oriented should be 

assigned to the second-level processor. A typical second-level processor 

task would include character assembly/disassembly» This function would, 

for example, remove the start/stop bits from a asynchronous character 

before sending the character on to the first-level processor. This would 

allow greater communication efficiencies. In synchronous transmission 

special characters would be detected, under program control, and proper 

action taken. These special characters would include End of Message and 

other similar characters. Also basic error detection tasks would be 

assigned to the second-level processors. 

The primary tasks of the second-level processors would be to act as 

a programmable interface to terminal devices and to perform as a data 

concentrator. The second-level processor would be capable of remote opera­

tion and would result in higher communication efficiencies because of its 

ability to act as a concentrator. In a similar manner, terminal inter­

faces would be easier to implement resulting in savings for the user. The 
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intelligent terminal is not excluded ty this technique, however. The 

flexibility of the communication system should be such that user needs 

determine the type of terminal, not communication and host machine needs. 

The second-level processor should be capable of modularity on a 

small incremental basis. That is, it should be relatively inexpensive for 

a single user to go on-line. If, for example, a module size of 16 inter­

faces is adopted as the smallest add-on, the price for 17 interfaces would 

be prohibitive. Thus a small increment of, say, one or two would be pref­

erable. This should not make those instances where a large number of 

terminals are to be added more expensive, however. 

The computational requirements upon the first-level processor are 

essentially the same as those of the second—level processor. Generally, 

those tasks which require larger amounts of memory should be performed in 

the first-level instead of the second. Code conversion is an example of 

a first-level processing task. The instruction set of the first-level 

processor will need to be more character-oriented. The bit handling capa­

bility that is desirable in the second will not be so desirable in the 

first level. 

Because several second level processors could feed into a single first-

level processor,a contention system will probably be necessary. The 

combined data rate could be very high and, unless the service times were 

very short, would overburden the first-level processor. In addition, it 

might be desirable to handle a few terminals which have very high data 

transfer rates e.g., drum memories. This points out, once again, that the 

flexibility achieved through the use of microprogramming and bus-orienta­

tion is highly desirable. 
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Both first and second level processors will need to facilitate the 

use of subroutines. The nature of coimunication processing is that many 

similar devices will be serviced with only a few parameters changing from 

device to device. Thus, if programs are written in terms of subroutines, 

the necessary storage space is reduced because the same subroutine with 

different parameters will suffice for many similar devices. 
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COMMUNICATION PROCESSOR STRUCTURES 

The system characteristics of a processor lAiich are visible to the 

programmer constitute the structure of the machine. Structure differs from 

organization in that organization is concerned with data flow paths and 

control techniques. Structure is concerned with how a programmer can use 

those organizational features to perform efficient processing. 

Communication processors should make queue and list maintenance easier 

and minimize the hardware necessary to interface various terminals. The 

organization requirements imposed by these considerations has been pointed 

out. The structure considerations will now be discussed. 

Structure Considerations 

It is possible to use a general purpose machine as a communication 

processor. The instruction set of the standard mini-computer tends to be 

very heavily biased toward arithmetic operations, however. This approach 

results in device interfaces that are relatively complex. A primary con­

cern of the communication processor architect should be to reduce the 

amount of logic necessary to interface a terminal, device. This means, in 

general, that the instruction set should be capalxLe of small, low level 

operations lAen dealing with a terminal device. 

A second basic consideration of the system architect must be the 

amount of processing accomplished by his instructions. That is, are the 

instructions to be macroinstructions, accomplishing a large amount of proc­

essing, or are the instructions to be more micro, accomplishing a limited 

amount of processing? A basic factor in making this decision is the speed 

of the program store. If the program store is slow, then a more macro-

instruction might be required to keep the speed of execution at a higher 
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level. If, on the other hand, an extremely fast program store is available, 

the instruction set can be more basic -with less frills. Instructions which 

are very large, i.e., accomplish much processing, tend to require more 

hardware. This conflicts with the desire to have an inexpensive and basic 

machine. Small instructions, on the other hand, require less hardware in 

the processor while storage needs might be increased. The increased stor­

age is not a certainty. 

The requirements of communication processing are complex. At one end 

of the communication system are the terminals; at the other the host 

machine. There is an overpowering need for flexibility in the instruction 

set of the common processor. The more basic instructions are more flexible 

in that more macroinstructions could be generated using these basic 

instructions. If very powerful macroinstructions are implemented in hard­

ware, the flexibility of the machine could be limited because the complex 

macroinstruction could be ineffective at one end of the conmainication proc­

essing network. Hence, the instruction set should be basic, with small 

instructions. 

As an example of this approach, take a shift instruction. A shift 

instruction might be capable of selecting some register and making n shifts 

with certain end connections. A more basic instruction set would liave a 

shift instruction which would shift one place only. Thus, multiple shifts 

would need to be programmed. 

The basic instruction approach minimizes the hardware necessary to do 

the job, reduces the length of the instruction, and is more flexible by 

virtue of the fact that the programmer, in effect, generates his own 

macroinstructions. This does not mean that the basic, arithmetic-oriented 
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instruction set of the standard mini-computer is the best instruction set. 

The particular instruction set must facilitate those communication-

oriented tasks described in the preceding sections. 

An example of the type of instruction set being advocated is the 

instruction set of the actual communication processor which is described 

in Appendix A, No detailed description of an instruction set for the 

hypothetical processor is given because the instruction sets would be 

virtually identical» Examples of programs are given in Appendix B. A 

following section will describe how these instructions are to be used in 

communication processing as well as a general look at the structure of the 

particular machine. 
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A MSI COMMUNICATION PROCESSOR 

The basic considerations in designing a communication-oriented proc­

essor have been discussed in the preceding sections» The details of an 

MSI logic family were also presented. To show how the assumed technology 

affects communication processor organization, the design of a hypothetical 

MSI communication processor will now be discussed. While this processor 

is hypothetical, it bears a close resemblance to an actual processor. The 

details of the organization of this actual processor are discussed in a 

following section. The conclusions of this thesis report on some of the 

results obtained from this actual processor. The rest of this section 

deals entirely with the hypothetical processor. 

One primary consideration in the design of microprogrammed machines is 

that of nieroinatruetion. The two primary approaches to microprograimning 

are referred to as horizontal and vertical. The first results in long 

microinstructions lengths. This is because, in horizontal microprogram-

BiiiiS;each bit has some dedicated meaning. Thus one bit could, for exançjle, 

control a gate signal. In vertical microprogramming the microinstruction 

is coded; a group of bits can carry several meanings, e.g., gate into one 

of eight registers. Vertical microprogramming results in shorter word 

lengths lAlle more words of storage might be needed as well as more decod­

ing logic on a per data bit basis. 

Because of the desire to keep the instruction word relatively short, 

the decision was made to use either eight- or l6-bit instructions. The 

great majority of the instructions are eight bit instructions with some 16-

bit instructions for those cases idiere additional information or parameters 
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are necessary. The following section describes the instructions in more 

detail. Only the actual processor's instruction set is described. 

The block diagram of a î'ISI communication processor is given in 

Figure 9. Basic processor communication is on two busses, the M or Memory 

bus and the FA or Flag Address bus. Both busses are eight-bits wide and 

bidirectional. The H-bus is the primary machine communication bus while 

the primary function of a FA-bus is to address the flag and data arrays. 

This addressing operation is described below. 

The scratchpad store is to be used for holding data and parameters. 

Input/output queues and tables would be stored in the scratchpad as well 

as any otlier information which is to be altered. The scratchpad store 

would be constructed using the large memory chip of 512 bits. The scratch­

pad would be n words by eight bits where n-̂  64l(. The store would have an 

access time on the order of 100 ns and a cycle time of 125 ns. 

The scratchpad store is addressed by the address store. The address 

store would be constructed using two small, high speed chips in parallel 

to give eight l6~bit addresses. The first four locations of the address 

memory would be used as scratchpad store address registers. These four 

address registers are subdivided into two parts, a word register and a page 

register. These registers are accessible by program control as eight-bit 

registers. 

The reason for this type of scratchpad addressing are twofold. First, 

in the preceding section it was pointed out that a basic need of communi­

cation processing is the ability to process and. maintain strings of charac­

ters and queues. To facilitate this processing capability,the processor 

has been given four storage-address registers. Thus, pointer maintenance 
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wo-uld be easier because pointers, queue addresses and similar addresses 

could be saved and manipulated. The single address register concept would 

be very limiting because of the constant movement of data and control 

information from one queue to another, for example. 

The second reason for this mode of storage addressing relates to the 

desire to have relatively short instructions. The use of general address 

registers provides an element of indirection; the instruction need only 

specify the address register to be used and not the address itself. 

A benefit which is derived from this approach is that the require­

ments upon the program memory are relaxed. If an address were to be con­

tained in an instruction, then either a dynamically writable program memory 

would be required, or a method would have to be devised by which address 

information could be modified after being read out of a read-only store. 

The organization described above does not favor either a read-only store 

or a writable program store. 

The high order four locations of address memory are to be used as a 

push-down stack. The hardware push-down stack xrould greatly facilitate 

subroutine linkage; the programmer need not worry about storing a return 

address. As pointed out in the preceding section,subroutines form an 

important part of communication processing. 

The access time of the address memory is 35 ns. Note that, because 

the high speed memory device is used, very little speed penalty is paid 

for this type of organization. 

The basic arithmetic/logic capability of the processor is furnished 

by the arithmetic/logic unit. The ALU would be constructed using the 

basic ALU chip; this ALU would be shared by the entire machine » For 
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example, the basic instructions, e.g., add, would use the ALU. The 

scratchpad address registers would also use the ALU for incrementing and 

decrementing. This sharing of logic would keep the hardware cost at mini­

mal levels. The ALU is capable of very high speed operation, on the order 

of ?.0 ns, and would perform well under such conditions. 

To provide temporary high-speed storage, a file of general-purpose 

registers has been provided. These 'registers' would be constructed using 

a small, high-speed memory chip and would be used for holding operands and 

data. In addition to the above purpose, general-purpose register seven 

(GP?) would be used as a special purpose flag address register. This func­

tion is explained below. 

To minimize hardïvare,a polling scheme has been adapted for this proc­

essor» The polling scheme adapted functions as follows. The flag array 

and data array are shown in more detail in Figure 10. There is a one-bit 

flag flip-flop associated with each terminal device. In a corresponding 

manner each terminal has a data register associated with it. The data 

register can be from one to eight bits long,depending upon the character­

istics of the terminal device. 

Typically,polling would proceed testing by a single flag bit at a time. 

Because of the desire to increase the efficiency of the polling scheme, and 

to allow more freedom in terminal speeds, a group-polling method has been 

adapted, A flag register is made up of individual flag flip-flops; the 

maximum length is eight bits. During a poll an entire flag register can be 

tested at once. If any bit is true, then further testing is done to find 

out which device within that flag register needs servicing, Iflien the serv­

ice routine is completed, polling proceeds with the next flag register. 
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The flag registers are addressed via the flag address bus as are the 

data registers. General-purpose register seven is used as a flag address 

register and also as a general usage register. This gives the system an 

additional dimension of flexibility. 

Flag registers can be from one to eight bits in length. This allows 

a kind of priority structure within the machine. A high priority device, 

e.g., a high speed CRT, would be assigned to a one-bit flag register. Slow 

speed devices would be grouped into a single flag register of eight bits or 

less, e.g., eight teletypewriters. This could give the CRT a priority over 

the teletypewriters. The actual processing technique to be used would 

determine the priority. The organization permits the use of this kind of 

technique. The number of flag registers has been limited to 16. This 

would allow up to 128 terminals. Other considerations would probably limit 

the number of terminals to a somewhat smaller number. 

Figure 10 depicts these flag registers (FR) with the associated data 

registers. Flag register i has four terminal devices represented; all four 

devices are serial devices. Flag register m has eight devices; two of the 

devices are seven bit parallel devices while the remaining six are serial 

devices. The remaining flag register, s, has but one terminal device. The 

data array in this case consists of a single eight bit register. 

This organization treats each input/output port of the communication 

processor in an identical manner. While some ports might have a priority 

over other ports in a particular polling scheme,the organization is identi­

cal, This eliminates special channels from the communication processor in-, 

to a host machine and gives the communication processor a greater flexibil­



www.manaraa.com

49 

ity. Any port can communicate with any other port. The only limitations 

are buffer size (speed) and protection considerations. 

The control section of the processor is depicted in Figure 11, The 

basic elements of the control section are the program store, tlie program 

store address register (PSAR), and the control logic chips. The control 

scheme to be implemented is identical to the MSI control technique. 

The dual requirements of very high speed and electrically alterable 

operation pose a complex problem. As was pointed out in a preceding 

section, many current EAROM technologies are limiting either in alter-

ability or speed characteristics. One technology which fits very nicely 

into the communication processor niche is the OVONIC memory cell. The 

OVONIG cell is basically a diode resistor type memory. Hence, the speed 

capabilities of the cell seem to be limited only by the diode storage time. 

In addition, the OVONIC device can be written in a straight forward manner. 

At present OVONIG devices exist which can be written many times; individual 

devices have an assured lifetime of 100,000 writing operations. 

The communication processing task is such that, once a given terminal-

machine configuration is running, there are few changes on a day-to-day 

basis; the program set does not change. In addition, as was pointed out in 

a preceding section, it is very desirable to have a microprogram store 

which can not modify itself. Self modification can lead to program errors 

which would be especially disastrous in a remote, unattended processor. 

The OVONIC memory technology lends itself quiet nicely to communication 

processing. The cell is nonvolatile, fast, and writable. 
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An instruction control sequence would proceed thusly: 

Step 

0 

1 

Action 

Access program memory/load instruction 

register 

Decode instruction 

2 Set functional completion codes 

3 Start execution 

n Signal instruction completion 

There are two methods to set functional completion codes. The first 

would be to carry completion code information in the program memory. This 

would mean that either instructions for loading functional completion codes 

would be included in the instruction set or that a single instruction would 

carry functional completion codes for all functional units. The second 

alternative would be to set functional completion codes with combinational, 

hardwired logic. The second alternative gives higher performance levels 

than the first and would be used. The flexibility of the second approach 

is less than the first but the higher performance and shorter memory word 

of the second approach are the primary considerations here. 

The functional completion bus is four bits wide. As can be seen from 

the system block diagram (Figure 9) there are six functional units. Thus 

16 functional completion codes are adequate. 

The PSAR is subdivided on a page, word basis. Incrementing is auto­

matic and is continous across page boundaries. Note that the PSAR could 
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be constructed using two ALU chips and two eight-bit latches. This demon­

strates the generality of the ALU. 

The decode/timing unit controls the program memory. This unit would 

also provide the system clock signal to the system. The system clock rate 

would be determined by the program store access time as well as functional 

unit requirements. 

There is, in addition to the eight-bit instruction register, a charac­

ter two register. This register would be used to hold the second character 

of a two-character instruction. This mode of operation simplifies the 

design of the local instruction decoders somewhat. The contents of the 

character two register are distributed on an eight-bit bus which is not 

shown for simplicity. 

There is a data path from the program store to the PSAR. This is to 

facilitate juiqps and similar operations. In addition, a data path from the 

M-bus has been provided so as to facilitate macroinstruction execution. 

The program store can be expanded to 256 pages» Each page contains 

256 words. The amount of program storage needed should be considerably 

less than the maximum amount, however. 

In a preceding section, mention was made of the problem of scratchpad 

volatility. To achieve automatic start up along with fast operation the 

follovdng solution to the problem of scratchpad volatility will be used. 

Certain information would be stored, on a more or less permanent 

basis, in the program store. This information, upon a cold start, or re­

start, would be loaded into the scratchpad store. Thus parameters and 

sijtnilar information could be retained even though a power outage. When a 

system clear is executed,a small program would move information from the 
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program store to the scratchpad store. This would permit the programmer to 

always use the high-speed scratchpad as his working storage. After execu­

tion of the initialization program,the machine could proceed on a polling 

loop. 

The organization that has been presented is some'what biased toward the 

requirements of the second-level processors. As pointed out previously, 

the general requirements of the first level processor are very similar to 

those of the second level processor. The organization presented here is 

flexible enough to fit in either slot. The possibility exists that a ma­

chine that is limited to strictly polling might be overburdened in the 

first level position. Thus the use of a bus-oriented organization is very 

important. Data paths have been provided so that an interrupt structure 

could be easily added to this machine. For example, the data path from the 

M-bus to the PSAR could be used to inqplement hardware interrupt handling. 

To be sure, additional hardware and programming effort would be necessary. 

It is significant that this capability could be added without a major 

redesign. 

I 
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A TERMINAL PROCESSOR 

A small terminal processor which closely resembles the hypothetical 

processor discussed in the preceding sections has been construe bod. This 

terminal processor is intended for use as a second-level processor. The 

organization of this machine is very similar to the hypothetical processor 

as is the structure. Appendix A describes the instruction set of the ter­

minal processor in detail. 

A block diagram of the terminal processor is given in Figure 12. 

Instructions are distributed to functional units by the instruction bus. 

Both the instruction and its complement are distributed; instructions are 

decoded locally. The instruction bus is 16 bits wide; eight bits and their 

complements. Functional unit timing signals are generated from a two-phase 

system clock. Each printed circuit board has a local clock which can gen­

erate up to 16 timing phases. These 16 phases are distributed to the func­

tional units on that printed circuit board. The 16 local timing signals 

are generated using an eight-bit shift register. An instruction completion 

signal (TOS) restarts the timing shift registers at time zero (TO). In 

this manner the instruction execution time can be varied. 

The functional completion bus was not implemented in the terminal proc-

essOT. The idea of using a functional completion bus ivas partially a 

result of early work done on the actual processor. Unfortunately, the idea 

was developed to late for inclusion in the actual machine. 

The terminal processor has three data busses; the Memory bus (H-bus), 

the Flag Address bus (A-bus) and the Flag Data bus (F-bus). These busses 

are bidirectional, carry true data, and are eight bits wide. The M-bus is 

the primary system communication bus. The A- and the F-busses are used to 
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move data and control information to and from the Flag/Data section of the 

processor. In addition, the A and F-busses are the operand busses for the 

ALU. 

The three-bus organization allowed the ALU's registers to be used as 

general working registers in the actual machine. This minimized the logic 

somewhat. The ALU of the hypothetical machine contains two operand reg­

isters, hence a two-bus organization -was sufficient. 

Program storage for the terminal processor is in the Program Store 

(PS). The PS has been implemented using an OVONIC read-mostly memory. The 

basic memory chip is a 256-bit unit which consists of a 16 x 16 OVONIC 

device and diode array. The OVONIC memory device provides the high-speed 

and writability required by the terminal processor. In addition, the 

OVONIC device is nonvolatile which is an important point for this proces­

sor. 

The Program Storage Address Register (PSAR) is incremented at the 

start of an instruction. The access time of the PS, therefore, is simply 

the time needed to gate the outputs of the memory cells into a latch. This 

approach was taken so as to minimize the access time; some 30 to 40 ns were 

saved. The PS cycle time is less than l60 ns. No instruction requires a 

cycle time of less than 160 ns, however, 

A block of 256 eight-bit characters has been implemented in the ma­

chine. Additional program storage will be added in the near future to 

support additional firmware» 

The scratchpad store is a high speed semiconductor memory which 

utilizes Schottky bipolar technology. Memory access time is 60 ns from 

address in to data out, A capacity of 256 eight-bit characters has been 
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implemented. While the amount of scratchpad could be expanded the follow­

ing approach would seem to be more practical. A large core memory could 

be added on as input/output device. The processor would contôjiue to use 

the scratchpad store as the working store. Under program control addition­

al information would be shuttled between the high speed scratchpad and the 

slower core. This would give the processor a "hierarchy" memory of sorts. 

The idea of an address store has been used in the terminal processor. 

Because the actual chip used to construct the address store is organized 

as 16 four-bit words, the file registers have been included in the address 

store. The purpose of the address store is to provide multiple storage 

address registers. These storage address registers are accessible from the 

machine under program control. This gives the machine additional flexi­

bility, Not depicted in Figure 12 is a data path from the Address Store to 

the ALU via the A-bus which permits the use of the ALU for storage address 

register incrementing or decrementing. 

The Address Store is segmented in the following manner. The first 

four addresses are used as a push-down stack for the program memory. This 

allows nesting of subroutines up to four deep. The second four addresses 

are the Scratchpad Storage Address Registers (SAR's), The remaining eight 

locations constitute the file registers. 

The scratchpad input register (S-Reg) is used to hold data during a 

scratchpad write. The S Register can also be used as a general register. 

The S Register serves as the implied destination for those two operand 

instructions I'Aiich use the ALU. 

A more detailed diagram of the flag registers and data arrays is given 

in Figure I3, The flag/data section is the l/O section of the processor. 
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Each terminal device has a 'service needed flag' flip-flop (called a flag 

flip-flop) associated -with it. This flag flip-flop is physically located 

in the processor. Flag flip-flops can be grouped into registers of up to 

eight bits. These registers are called flag registers. The maximum number 

of flag registers is 16. • 

Associated with each terminal device is a data register. The length 

of a data register is determined by the terminal device. Serial devices 

would have a data register of one bit. Terminals that are parallel data 

transmission devices would have longer data registers. If more than eight 

bits are to be transferred to a terminal device at once, a word assembly 

would be required. Thus, for example, if a l6-bit device is to be inter­

faced, two characters would be moved from the processor to the interface. 

The flag/data section is addressed via the A-bus. The Flag Address 

Register (FAR) and the Flag Index Register (FIR) are used to hold flag 

address information. Both the FAR and the FIR are four-bit registers. 

The FAR and the FIR correspond to the GPR? in the hypothetical machine. 

The FAR selects a flag register while the FIR selects a bit from the pre­

viously selected flag register• The three most significant bits of the FIR 

are used to select the flag bit. This permits the storage of two charac­

ters of information at the location in page zero which can be accessed 

using an RPS instruction vâiich is explained later. For purposes of data 

movement the FAR and FIR can be treated as a single eight-bit register 

(the FAIR). The four bits of the FAR occupy the most significant bit 

positions of the FAIR. 

The arithmetic/logic unit (ALU) is depicted in Figure 14. Registers I 

and II are shown in the ALU but are, in fact, general purpose registers. 
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The ALU consists of an adder/subtracter, a shift network, and an 'or' 

circuit. 'And' capability is achieved by gating two registers onto the 

same bus at the same time then gating the contents of the bus into a third 

register. The result is the 'and' of the two registers. 

The ALU is shared by the processor. Arithmetic/logic type instruc­

tions utilize the ALU during operation as do certain comparison instruc­

tions. In addition, the ALU is used to increment or decrement the SAR's. 

Subtraction is in two's con̂ lement. That is, given two operands and 

the command to subtract the ALU forms the result in two's complement. The 

add over flow flip-flop captures any overflows idien addingj it can be test­

ed by iostruotion (SA.V). 

A combinational shifting network has been included in the ALU. This 

network extends a shifting capability to all working registers in the 

machine. This approach is less expensive than giving each individual re­

gister a shifting capability. 

Processing Techniques 

In the design of any communication processor certain special instruc­

tions can be included if these instructions result in a significant per­

formance increase or a decrease in cost. These special instructions can 

be justified only if the task warrents theic inclusion. Special instruc­

tions which are not used do not increase performance. This fact immedi­

ately eliminates such instructions as a floating point add from the commu­

nication processor. 

The organization of the communication processor was oriented toward a 

polling scheme. Thus, certain instructions have been included to make 
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polling more efficient. A description of how these instructions would be 

used follows. 

The FAIR has the special purpose of addressing the flag and data 

arrays. The FAIR is divided into the FAR and FIR. The FAR is used to ad­

dress a particular flag register or data array. The three most significant 

bits of the FUI are used to address a particular bit in the flag register 

or register in the data array. Two special instructions have been included 

to increment the FAR and the FIR. These instructions are Increment Flag 

Address Register (IFAR) and Increment Flag Index Register (IFIR)u In ad­

dition, IFAR performs a zero test upon the contents of the FAR after the 

increment. If the FAR is zero, the contents of the next program store ad­

dress are placed in the FAR. This provides a method of controlling the 

length of a polling loop. The length of the loop can be changed by re­

writing the location following the IFAR instruction. 

To permit using the program store for a nonvolatile storage of 

permanent parameters, a Read Program Store instruction has been included. 

Read Program Store uses a programmer selected register as a page zero ad­

dress. The character read out is placed in the S register. This mode of 

operation could be used, for example, to perform a table look-up when a set 

flag is detected. The table would contain a starting address for the ser­

vice routine. 

The maintenance of multiple communication queues is not very sequen­

tial in nature even though the queues are verv sequential in nature, 

I'rooessing usually involves moving data from one queue to another as well 

as u%)dating queue pointers. Because of this characteristic the standard, 

automatically incrementing/decrementing scratchpad address register is not 
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practicplly useful in communication processors. This is especially true in 

a processor in which separate stores are used for program and for data. 

The organization presented previously took this characteristic in.to ac­

count, The instruction set includes special instructions which are to be 

used for the sole purpose of incrementing and decrementing scratchpad ad­

dress registers. This approach allows for more flexible use of the 

scratchpad store by virtue of the fact that the programmer is responsible 

for incrementing or decrementing the scratchpad store address registers. 

Bits in an instruction word could be used to specify an increment or dec­

rement after each read or write operation. The short instruction word 

and added flexibility are preferred, however, as is the more basic type of 

instruction. 

A certain number of instructions must be dedicated to l/O. Since 

carrier communications are serial in nature, instructions have been included 

to aid in serial l/O. In addition, l/O clock control has been included in 

the instruction set. This implies that no bit counters and similar devices 

are required within the individual devices* interfaces. 

The majority of the rest of the instructions are skips and branches. 

That is, after a test which is not satisfied the next n locations are 

skipped. An example of this type of instruction is Zero Test Flag Charac­

ter (ZTFC). This approach is implemented to keep the instruction word 

short. Note that the basic serial devices would be handled using the zero 

test and set data instructions rather than a move command. 

A group of unconditional branches relative to the current location 

have been included. This, once again, has been done to keep the instruc-
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Lion» short. A jump relative to the current location is not always ade­

quate, however. Thus an absolute jump must also be provided. 

The remaining instructions are those instructions that are. more famil­

iar to the computer user; add, subtraction, shift, etc. The terminal proc­

essor uses implied sources for the operands as well as an implied destina­

tion. This would probably not be the case in the hypothetical communica­

tion processor. The file registers provide an extra dimension of flexi­

bility which would be decreased "ty the use of implied sources. The use of 

an implied destination would be retained, however, to keep the instruction 

word as short as possible. 

The terminal processor has been constructed using high powered Tran­

sis tor-Transistor Logic. Transistor-Transistor Logic does not have many 

of the exact characteristics of the proposed MSI family but does have many 

MSI functions. In addition, TTL is very inexpensive. The processor, less 

memories and l/O section, used about 300 TTL circuits, both MSI and SSI. 

The system is constructed upon printed circuit boards vhich. are 11" by 14". 

Each board could contain a maximum of 144 integrated circuits; the actual 

high is 130. The system interconnections are provided by a 88 pin bus via 

two 44 pin connectors. 

The I/O section, i.e., the Flag and Data arrays, is also constructed 

on 11" by 14" boards. There are eight data set interfaces and associated 

logic on a single board with a IC count of about 125. Data rates can be 

easily varied on an individual interface basis by changing a pair of capac­

itors. Start-stop bit decoding is, of course, a function of the program 

and not the hardware. 
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The entire processor is enclosed in a 17" 22" by 13" housing com­

plete with power supplies, cooling and front panel control switches. This 

size of enclosure could have been reduced had not a commercial power supjûy 

be used. The project was to be completed in to short a period of time to 

warrant development of an adequate power supply. The conclusions of this 

thesis report on the results obtained from this processor as well as com­

paring its performance with other communication processors. 
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CONCLUSIONS 

This thesis has discussed the application of the new integrated 

circuit technology to the problems of communication processing. There 

are several key contributions which are summarized in this section. In 

addition, the results of the terminal processor project which experimen­

tally verify many of the proposed concepts are outlined. 

A MSI circuit family has been proposed idiich solves the three most 

important problems encountered in designing systems with MSI components. 

The first problem solved is that of reducing interconnections. A MSI 

family which does not take into account system and chip interconnections, 

i.e., does not reduce interconnections, is not a viable MSI family. The 

proposed logic family reduces system interconnections facilitating a 

bus-oriented system. This is of critical iaçxsrtance in MSI system design. 

The second problem solved by this logic family is that of minimal 

unique parts. The family, which contains nine parts including memories, 

does not limit a system designer to some standard machine. The designer 

is free to design an unique system. The complexity of the circuits is 

close to the current state-of-the-art; the nine MSI elements are practical. 

The third problem solved is more subtle than the first two. This 

problem is that of control technique. The question of how control sequenc­

ing is to be done is of major importance when designing a MSI logic family. 

The solution described herein is an unique and viable one. The flexibility 

and generality of the control chip is great. The control technique can be 

expanded to many functional units. The functional units can operate seri­

ally or in parallel. Local timing pulses are generated; the number can be 
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greatly expanded. The system designer has total freedom in designing func­

tional units; there are no restrictions. 

A MSI communication processor "which utilizes the MSI logic family has 

"been described. This communication processor shows how system architects 

can adapt a standard MSI logic family into an unique system. The MSI 

communication processor reflects the influence of the universal register 

approach to LSI architecture as does the MSI family. It is significant 

that it has "been shown that this approach can be adapted into a special-

purpose machine. The organization of the communication processor is unique 

and specialized; the logic family used in the design is unique but not 

specialized. 

There are three organizational features in the MSI processor which 

make it a useful communication processor. One, the flag/data register 

concept and the polling technique reduce the interfacing hardware. Two, 

the indirect addressing method gives the machine a great deal of flexi­

bility in queue maintenance. Three, the use of a bus-oriented system de­

sign gives the machine modularity at a low level. 

A small version of the MSI processor has been designed and built. 

Since work on the two processors progressed in parallel not all the fea­

tures proposed for the MSI processor were included in the actual processor. 

The most important feature not included was the functional completion bus. 

Initial testing has shown that the instruction execution rate of the proc­

essor is on the order of three million instructions per second. This rate 

is adequate for the second-level processing tasks. Programs have been 

written to aid in evaluating the machine. These programs indicate the 

maximum data rate that could be supported by the processor would be between 
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50,000 and 100,000 bits per second. This assumes serial devices. This 

would enable the processor to perform second-level processor functions for 

up to 128 low-speed terminals which is the maximum addressing capability 

of the machine. 

A major point of this thesis has been that a second-level processor 

should minimize the device interfaces. The terminal processor data set 

interfaces, flag flip-flop, data register, and control circuitry amounts 

to 15 small-scale integrated circuits per line. This is a small amount of 

logic. Thus, the organization presented does minimize the problem of 

interfacing. 

The data rates above were calculated based on a strictly sequential 

polling loop. This indicates that group polling is a viable technique. 

The performance of the processor compares quite favorably with other, sim­

ilar processors. 

lite western proposed by Burner et al. (lb) was a two-level system in 

which the second-level processor is a Interdata Model 3« This dual level 

processing scheme was able to support only 64 low-speed terminals. In 

addition. Burner's system would support only two different data trans­

mission speeds; the flexibility of the system was very limited. 

There are many commercial communication processors. Two, which are 

representative of this kind of processor, are the Microsystems Model 812 and 

the Varian 520/DC Communication System. The Microsystems 812 is a micro­

programmed machine ; the microinstructions are 16 bits. The ROS has a cycle 

time of 220 ns. The second-level processor is not a separate entity in the 

812. The 812 is, in effect, both a first-level processor and a second—lev­

el processor. The first-level processor is macroprogrammed by the system 
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programmer, the second-level processor is in the firmware and device inter­

faces, and can not be programmed without a change in the ROS. The 812 can 

handle up to 32 low-speed lines. These 32 lines are added in groups of 

eight and all eight lines must be identical in speed and start-stop codes. 

Each group of eight lines requires 64 characters of memory. 

The terminal processor can handle up to 128 low-speed lines. Each 

line can be different both in speed and code. The terminal processor, with 

a Program Store having a bandwidth of only 2/3 that of the 812, is able to 

achieve throughput on the order of four times greater than that of the 812. 

This is due to two reasons. First, and most importantly, the organization 

was intended strictly to enable high data rates and maximum flexibility. 

The organization does that. Second, the use of a bipolar scratchpad has 

increased the terminal processor's throughput over what would be obtained 

using a core memory. This is one inçiortant reason that semiconductor 

stores are very desirable; the price/performance ratio is very good in low 

capacity memories. The terminal processor requires, in the sample pro­

grams, only five characters of scratchpad storage per line. This is 

slightly less than the 812. 

The Varian 520/DC is a two-level processor. The first level is a 

Varian 520/i, a mini-computer. The second level is a hardwired data commu­

nications controller. This controller can only be used with a 520/i; it 

has no remote capability; stand alone operation is not possible. The 

controller is a hardwired second-level processor. The flexibility of the 

controller is achieved by programming the 520/i, The controller is a 

special l/O device which requires specialized software support. The 

controller has 10 characters of semiconductor storage per line. Its 
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performance levels are quite high. The Varian 520/dC has a capacity of 64 

1200 "baud lines. The terminal processor could handle on the order of 40 

1200 baud lines at best. This demonstrates the fact that microprogramming 

usually results in a somewhat reduced performance. It is significant, 

however, that the specialized terminal processor can handle two thirds the 

load of the hardwired machine. This speaks well for the polling technique 

and for the organization. 

In conclusion, a viable, state-of-the-art approach to communication 

processing has been described. This approach has been shown to be practi­

cal and realistic. The approach is not based on present day computer 

architectures but is based on what computer architectures will be in the 

near future. Computer system architectures are changing rapidly because 

of the semiconductor industry. The system architect must be aware of, and 

involved in, the advances of semiconductors. 
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APPENDIX A; INSTRUCTION SET DESCRIPTION 

The instructions described herein are those instructions •rfiich have 

been implemented in the actual terminal processor. The bulk of the in­

structions are eight-bit instructions with a few l6-bit instructions. 

There are three basic instruction types; Scratchpad Store and Temporary 

File Register instructions. Skips and Junçs, and instructions which perform 

some operation on a register or the contents of a register. The instruc­

tions will be described in the above listed order. When appropriate»mne­

monics are given for various instructions in addition to the hexadecimal 

and binary codes. 

READ SCRATCHPAD, SCRATCHPAD ADDRESS REGISTER, DESTINATION 

1 1 SAR DEST. 

Read the contents of the location specified by the selected Scratchpad 

Address Register (SAR) into the destination given. The destination speci­

fications are given in Table 1. The SAR specifications are: 

00 - SARO 

01 - SARI 

10 - SAR2 

11 - SAR3 

The file registers and the SAR*s can not be used as destinations for this 

command. 
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Table 1. Destination specifications 

Binary Code Destination/Source 

0000 NO1;3 

0001 Register I 

0010 Register II 

0011 F Bus, Flag Register 

0100 FAIR 

0101 FAR 

0110 FIR 

OUI F Bus, Data Array 

1000 SARO 

1001 SARI 

1010 SAR2 

1011 SAR3 

1100 S Register 

1101 None 

ino None 

mi PSAR 
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WRITE SCRATCHPAD, SAR SODRCE 

1 0 SAR SOURCE 

Write the contents of the specified source into the location given by 

the specified Address Register. The SAR and Source specifications are as 

in the Read command. The file registers and the SAR's can not be used for 

data sources. 

INCREMENT SAR ly n 50-57 
IS, n 

0 1 0 1 0 n SAR 

Increment the specified SAR. If n = 0, the increment is 1, if n = 1, 

the increment is 2. 

DECREMENT SAR tyn 58 - 5? 
DSÏ n 

0 1 0 1 1 n SAR 

This instruction is identical with IS except the selected SAR is de­

cremented. 
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READ TEMPORARY FILE REGISTER, n 
RTR, n 

40 - 47 

0 1 0 0 0 n 

Place the contents of the specified tençwrary file register in the S 

register. (0 < n^ 7) 

WRITE TEMPORARY PILE REGISTER, n 
WTR, n 

48 - 4P 

0 1 0 0 1 n 

Write the contents of the S register into the specified teiqporary file 

register. The TR specification is as in RTR. 

A large number of the instructions are jumps and conditional skips. 

Skips and jump relative instructions give flexible but short instructions. 

JUMP RELATIVE POSITIVE, n 
JRP, n 

10 - 13 

0 0 0 1 0 0 n 

Increment the program storage address register (PSAR) by one, two, 

three^^ or four according to the following specifications; 

n mc 

00 1 

01 2 

10 3 

11 4 
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Note that the amount of the increment does not necessarily correspond to 

the number of instructions jumped. The PSAR is incremented by one at the 

beginning of the instruction execution. For examplê  in Figure 15 the next 

instruction executed if n » +1 will be B •while for n = +4 the next instruc­

tion executed will be E. 

JUMP RELATIVE NEGATIVE, n 14 - 1? 
JRN, n 

7 2 10 

0 0 0 1 0 1 n 

Decrement the PSAR by n lAere n is specified as in JRP. The PSAR is 

decremented one more time than n to allow for the increment at the start of 

execution. In Figure 15, for example, the next instruction executed for 

JRN 1 will be Z lAiile for JRN 4 W will be the next instruction executed. 

JUMP ABSOLUTE, LOCATION LA 
JA; LOG 

0 0 0 1 1 0 1 0 

LOG 

Replace the contents of the PSAR 

following this instruction (LOG). If 

in^lemented the page address would be 

with the contents of the address 

additional pages of program store are 

stored following LOG. 
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w 

X 

JR 

B 

E 

Figure 15* Jump relative examples 
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SUBROUTINE JUMP, LOCATION 18 
SJ, LOG 

0 0 0 1 1 0 0 0 

LOG 

Store the current contents of the PSAR +1 in the top of the push-down 

stack then replace the contents of the PSAR with LOG. Since the PSAR is 

incremented at the start of instruction execution, the address stored in the 

push-down stack is PSAR +2. 

The push-down stack is four deep; subroutines can be nested up to four 

deep. If four is exceeded,an error will result. Note also that the in­

struction RPS utilizes the push-down stack during its execution. Thus, if 

the maximum number of nested subroutines has been used, and if the last 

subroutine uses RPS, an unrecoverable error will result. That is, there 

must be at least one en^ty push-down location available to use RPS. 

RETURN 19 

Place the contents of the top of push-down stack in the PSAR and con­

tinue program execution with the instruction at that location. 
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ZSIO TEST FLAG CHARACTER, SKIP n 20,21,23 
ZTFC, n 

7 2 1 0 

0 0 1 0 0 0 n 

Test the flag register specified by the FAR for zero. If the tested 

flag register is equal to zero,take the next instruction in sequence. If 

the tested flag register is not zero,increment the PSAR by the amount spe­

cified. The amount specifications is as follows: 00 skip 1, 01 skip 2, 

11 skip 4. The skip specification 10 is illegal and will not be executed. 

ZERO TEST FLAG HIT, SKIP n 24,25,2? 
ZTPB, n 

7 2 1 0 

0 0 1 0 0 1 n 

Test the bit of the flag register specified by the FAIR. If the bit 

is equal to zero ,take the next instruction in sequence. If the bit is not 

zero, increment the PSAR hgr n where n is specified as in ZTFC. 

ZERO TEST DATA CHARACTER, SKIP n 28,29,2B 
ZTDC, n 

7 2 1 0 

0 0 1 0 1 0 n 

This instruction is the sane as ZTFC except the data register ad­

dressed by the FAIR is tested* 
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ZERO TEST mTA BIT, SKIP n 2C,2D,2F 
ZTDB, n 

0 0 1 0 1 1 n 

This instruction is the same as ZTFB except a single bit of the spec­

ified data register is tested. 

ZERO TEST S REG, SKIP n 30,31,33 
ZTSC, n 

7 2 10 

0 0 1 1 0 0 n 

Test the contents of the S register for zero. If equal to zero take 

the next instruction in sequence. If not zero skip as in ZTFC. 

ZERO TEST S, BIT ZERO, SKIP n 3^,35,37 
ZTSB, n 

0 0 1 1 0 1 n 

Test bit zero of the S register. If equal to zero take the next in­

struction, If not zero skip as in ZTFC, 

SKIP IF ADDER OVERFLOW OF 
SAV 

If the add overflow flip-flop is equal to zero take the next instruc­

tion in sequence otherwise increment the PSAR by one. 
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NO OPERATION IE 
NOP 

Increment the PSAR l?y one. 

The rest of the instructions are operational instructions, i.e., they 

operate on a register or upon the contents of a register. The first group 

of instructions to be described are set and clear instructions. 

SET FLAG 60 
SF 

Set the flag bit specified by the FAIR equal to one. 

CLEAR FLAG 6l 
CP 

Set the flag bit specified by the FAIR equal to zero. 

SET DATA 62 
SD 

Set the data register specified by the FAIR equal to one. If the data 

register is more than one bit long all bits would be set equal to one. 

CLEAR DATA 63 
CD 

Set the data register specified by the FA331 equal to zero. If the 

data register is more than one bit long all bits would be set equal to 

zero. 
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START I/o CLOCK 64-
SIOC 

Start the clock in the interface specified by the FAIR, The first 

negative transition will occur at T/2 seconds after SIOC where T is the 

clock period, 

HIOC 65 

Halt the clock in the interface specified ly the FAIR, The clock will 

stop before the next negative transition if KEOC is executed within less 

than T/2 seconds. If HIOC is executed after T/2 seconds the clock will run 

until after the next positive transition. 

SET S bit ZERO 70 
SSO 

Set bit zero of the S register equal to one. 

CLEAR S bit ZERO 71 
CSO 

Set bit zero of the S register equal to zero» 

ODD PARITY 08 
OEAR 

If the parity of RI is odd set s^ equal to one. If the parity of RI 

is even set equal to zero. 
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EVEN PARITY 09 
EPAR 

If the parity of RI is even set s^ equal to one, if odd, set equal 

to zero. 

SET CONSTANT; NUMBER OA 
SO; N 

0 0 0 0 1 0 1 0 

N 

Place the contents of the location following this instruction in RII. 

CLEAR; REGISTER OD 

0 0 0 1 0 1 1 0 1 

REG. 

Set the contents of the register specified equal to zero. The regis­

ter specifications are as in READ. 

INCREMENT; AMDUNT, REGISTER 00 
INC; #, REG 

0 0 0 0 0 0 0 0 

AMOUNT REG 

Add. 'amount* (specified in the second character) to the contents of 

the specified register. The following registers can not be incremented by 

this instruction: SAR's, S REG, and FILE REGISTERS. 
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Otherwise the register specification is as in Table 1, 

DECREMENT J AMDDNT, REGISTER 01 
DEC; #, REG 

0 0 0 0 0 0 0 1 

AMDUNT REG 

Subtract 'amount' from the specified register. The register speci­

fication is as in INC. 

ADD 02 

Add the contents of RI to RII and place the result in the S register, 

SDBBIACT 03 
SDB 

Subtract the contents of RU from RI and place the result in the S 

register. Subtraction is two's con^lement. 

SHIFT; END CONNECTIONS, REGISTER 05 
SHIFT; EC, REG 

0 0 0 0 0 1 0 1 

SHIFT REG 

Shift the specified register per the shift specification in Table 2. 

The register specification is as in READ except the PAR, FIR, FAIR, SAR's, 

FILE Registers, and FSÂR can not be shifted. 
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Table 2. Shift Specifications 

Bit 7 6 5 MEANING 

0 0 0 Shift Tip*, shift in zero 

0 0 1 Shift up, shift in one 

0 1 0 Shift up, shift circular 

0 1 1 Illegal 

1 0 0 Shift dovn, shift in zero 

1 0 1 Shift doim, shift in one 

1 1 0 Shift down, shift circular 

1 1 1 Illegal 

* 'UP' is toward the most significant bit. 

OR 06 

Logically 'or' the contents of RI and RII and place the result in the 

S register. 

AND 07 

Logically 'and' the contents of RI and RII and place the result in 

the S register. 
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COMPARE IMMEDIATE; CHARACTER OB 
CEI; CHAR 

0 0 0 0 1 0 1 1 

CHAR 

Compare the contents of RI with the character following this instruc­

tion. If the contents of RI are equal to CHAR set s^ equal to zero. If RI 

does not equal CHAR, set s^ equal to one. 

MOVE; SOURCE, EESTIKATION OC 
MDVE; SOU, BEST 

0 0 0 0 1 1 0 0 

SOU DEST 

Move the contents of SOU into DEST. The register specifications are 

as in READ. The address store can not be used for both source and desti­

nation. If it is desired to M3VE from Address Register one to Address Reg­

ister twD^ for example, a two step move will be necessary. For example: 

MDVE; SARO, RI 

MDVE; RI, SARI. 

If the F-bus is specified as a source or destination, the register used is 

specified by the FAIR according to Table 1. 
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READ PROGRAM STORE; REGISTER 
RPS» REG 

IB 

0 0 0 1 1 0 1 1 

REG 

Use the contents of REG as an address in Program Store. Place the 

contents of that address in the S register. The current contents of the 

PSAR are stored in the push-down stack during execution of this instruc­

tion, The S register can not be used as base register. (See the SJ 

instruction description.) 

INCREMENT FA REGISTER; MAXIMDM 68 
IPAR; MAX 

0 1 1 0 1 0 0 0 

MAX 0 0 0 0 

Increment the FAR by one. If the contents of the FAR are zero after 

the increment replace the contents of the FAR with MAX before proceeding. 

The FIR is cleared during execution of this instruction. 

INCREMENT FI REGISTER 69 
IFIR 

Increment the FIR by two. The increment is two to allow storage of 

two characters at the location pointed to by the FAIR. For example: 

FAIR CHAR 1 

FAIR +1 CHAR 2 

These two characters could be word and page addresses, for example. 
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APPENDIX B. SAMPLE PROQIAMS 

Two sample programs for polling techniques are described. The first 

is a sequential polling loop in which each flag register (FR) is tested. 

If any bit within the tested flag register is equal to one, further testing 

is done to find the first nonzero bit. The poll continues with the next 

flag register after completing the service routine. Note that one step of 

the service routine must be the resetting of the flag bit idiich is being 

serviced. The flow chart for the first program is given in Figure 16. 

The symbolic program given in Table 3* 

Table 3» Sequential poll 

SYMBOLIC CODE COMMENTS 

POLL: IPAR ; MAX 

ZTFC, 1 

ZTFB, 2 

JRN, 3 

IFIR 

Inc. FAR, if zero replace with max 

Test FR (FAR) for zero 

Try again 

Test flag bit (FAIR) for zero 

Inc FIR 

JRN 2 Try again 

SJ; SERVICE ROUTINE Go to service routine 

JA; POLL Start poll again 
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Increment 
FAR, Replace 
If Zero 

no 

Increment 
FIR 

Service 
Device (FAIR) 'Tlag 

(FAIR) 
yes 

I 

Figure 16. Sequential poll 
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The sequential polling technique might be to slow for certain devices. 

A second polling technique would be to poll a device, say device k, every 

other time. In this manner the time between poUs on device k would be 

limited to the maximum service time for two devices, A program for polling 

in this manner is given in Table 4 and Figure 17» Locations Temp 1 and 

Temp 2 are used to store the flag address of k and the flag address that 

was last polled. The program assumes the FAIR holds the flag address of k 

at the start while Ten^ 2 holds the flag address of the last polled device. 

If a device requires service a status look-up would be performed, A 

program for doing this is given in Table 5 and Figure 18» This program 

assumes that the FAIR holds the number of the device that requires service 

and the PS page zero location given by the FAIR holds the start of status 

for that device. (See Figure 19) The first character of status is con­

figured as shown below* 

2 4 10 

If T " 1 the device is transmitting, if T - 0 and R • 1 the device is 

receiving. If T • 0, R • 0, and the flag = 1 a clear to send signal has 

been received from the data set. 
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Table 4. Polling examile 

SYMBOLIC CODE 

Start: ZTPB, 1 

JRP 2 

SJ; SERVICE (k) 

MOVE; PAIR, S 

WIR n 

RTR m 

MDVE; S FAIR 

IPAR; MAX 

2TFC, 2 

JAî RESTORE 

ZTPB, 2 

IFIR 

JRN 2 

SJî SERVICE (PAIR) 

RESTORE: IDVE; FAIR S ] 

WTR m j 

RTR n 1 

MOVE; S FAIR J 
JA; START 

COMMENTS 

Test device k flag 

Flag (k) " 0 

Flag (k) - 1 

Save k 

Restore last flag address 

Inc FAR 

Test flag reg (PAR) 

Flag reg - 0 

Flag reg - 1 

Inc flag bit 

Try again 

Service device (FAIR) 

Save poll address 

Restore k 

Poll k 
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no 

Save content! 
of FAm, 
Start PoUinj 
Loop . 

yes no 

no 

Poll 

Place k in 
FAIR 

Device (FAIR] 
Service 
Routine 

Increment 
Flag Index 

Increment 
Flag Address 
Replace if 

zero 

Device k 
Service 
Routine 

Figure 1?. Polling example 
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Table 5* Status look-up 

SÏHBOUC CODE COMMENTS 

RPS; Fm 

M)VE; S, HDRO 

READ, MARO, S 

ZTSO, 1 

JRP Z 

JAt niANS 

SHIFT; , EA, S 

ZTSO. 2 

JA; GTS 

JAi REC 

Status address to S 

Status address HARO 

Status character to S 

Transmit? 

Go to receive test 

Go to transmit 

Shift to receive bit 

Receive? 

Go to clear to send 

Go to receive 
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Status 
Look-up 

MOVE 8 UARO 

no 
Transmit 

yes 

Shift 
EA 

yes 
Receive 

Figure 18. Status look-up 
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FAIR 

Program Store 

Scratchpad 

Status 

Figure 19» Status look-up technique 
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